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1.  INTRODUCTION

Cognitive impairment is a common consequence of 
stroke which is associated with poor recovery and out-
comes in daily life (Stolwyk et al., 2021). Post-stroke cog-
nitive impairment (PSCI) does not impact all cognitive 

skills equally, but instead manifests as a diverse range of 

domain-specific cognitive impairments which may selec-

tively impact a wide range of cognitive functions includ-

ing language, memory, and attention (Demeyere et  al., 

2016). While theoretical neuropsychology has traditionally 
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investigated brain–behaviour relationships by measuring 
the extent to which individual cognitive impairments map 
onto distinct lesion correlates, the clinical reality is that 
individual PSCI deficits rarely occur in isolation. Indeed, 
PSCI typically involves co-occurring impairments across 
multiple cognitive domains (Bickerton et  al., 2015; 
Demeyere et al., 2015; Nys et al., 2007; Tatemichi et al., 
1994). Past research has demonstrated that patterns of 
cognitive associations (and dissociations) vary widely 
across individuals, but the extent to which this behavioural 
variability may be captured by a reduced set of underly-
ing factors is not yet clear (Contador et al., 2023; Hobden 
et al., 2023; Stebbins et al., 2008). This question is both 
theoretically and clinically relevant, as exploring the fac-
tors underlying individual variability in PSCI can provide 
novel insight into complex brain–behaviour relationships 
while also establishing a novel, multi-domain cognitive 
framework which can be applied to better understand the 
cognitive needs of stroke patients.

Past research employing Principal Component Analy-
sis (PCA) has suggested that individual variability in multi-
domain PSCI can be at least partially explained by a 
reduced set of underlying behavioural factors (i.e., 
“dimensions”). Corbetta et al. (2015) evaluated language, 
motor, memory, and attention in first-time stroke survi-
vors (n  =  67) to identify factors explaining behavioural 
correlations across subjects. This study identified 3 fac-
tors (1 lateralised to each hemisphere and a non-
lateralised factor) accounting for 69% of behavioural 
variance (Corbetta et al., 2015). Similarly, Bisogno et al. 
(2021) found that approximately 50% of variance on the 
Oxford Cognitive Screen (OCS), a domain-specific cogni-
tive screen for stroke patients, could be accounted for by 
3 factors. The first factor captured language, calculation, 
praxis, right-lateralised spatial neglect, and memory. The 
second factor loaded on left motor and visuospatial defi-
cits, and the third factor loaded on right motor impair-
ment (Bisogno et  al., 2021). However, a more recent 
larger-scale (n = 1973) PCA found that OCS performance 
was best captured by a six-factor solution (language/
arithmetic, memory, visuomotor ability, orientation, spa-
tial exploration, and executive functions) (Iosa et  al., 
2022). Overall, past research has suggested that the vari-
ability in PSCI may be captured by a reduced number of 
dimensions, but the number and underlying nature of 
these dimensions have not been reliably established.

While PCA has been useful in describing patterns of 
PSCI associations, this approach may underestimate the 
complexity of PSCI (Sperber et al., 2022). Sperber et al. 
(2022) demonstrated that the systematic spatial variabil-
ity of stroke lesion anatomy alone is sufficient to result in 
an apparent low-dimensional structure underlying PSCI, 
even when all simulated impairments were independent. 

Consequently, Sperber et al. (2022) called for future stud-
ies to develop and compare latent structures of varying 
complexity, suggesting that additional factors which do 
not increase explained variance but produce an intuitively 
interpretable solution should be retained in solutions. 
Latent Class Analysis (LCA) is an analytical approach that 
can address this research gap. While PCA aims to explain 
covariance using a restricted set of continuous dimen-
sions that represent shared cognitive mechanisms (e.g., 
a visual dimension explaining praxis and picture naming 
performance), LCA explains the covariances through dis-
tinct subpopulations which differ qualitatively (Lubke & 
Muthén, 2005). An LCA model can identify stroke sub-
populations characterised by specific comorbidities 
which arise from co-occurring damage to independent 
cognitive functions. LCA enables the identification of 
such “subpopulations”, for which PCA is not ideal 
(Sperber et al., 2022). However, LCA also has some lim-
itations. For example, if tests are correlated due to over-
lap in what they measure, LCA models may overestimate 
the number of subpopulations (Lubke & Muthén, 2005). 
LCA (and PCA) both explain covariance based on a sin-
gle source, and it is likely that a combination of shared 
cause and independent co-occurrence explains PSCI 
profiles. However, in cases where the extensive 
behavioural data (e.g., data from several tests per func-
tion of interest) needed to support joint modelling of both 
sources of covariance (i.e., factor mixture models; Lubke 
& Muthén, 2005) are not available, LCA still provides a 
powerful method for identifying distinct profiles of PSCI 
impairment (Porcu & Giambona, 2017).

It is also important to consider that profiles of lesion-
induced disconnection, in addition to lesion location, 
may help explain patterns of PSCI associations. Past 
work has demonstrated that individual PSCI domain 
impairments can be mapped onto distinct patterns of 
network-level disconnection (Bowren et al., 2022; Moore 
et al., 2024), but the extent to which these disconnection 
patterns may help account for common PSCI profiles 
remains unclear.

However, it is important to recognise that lesion anat-
omy alone is unlikely to fully account for the variability in 
PSCI. This is because the relationship between impair-
ments and lesion anatomy is often confounded by pre-
existing neurovascular changes (Rost et  al., 2022). 
Premorbid factors including cerebral atrophy (Casolla 
et al., 2019; Stebbins et al., 2008), white matter integrity 
(Dacosta-Aguayo et al., 2014; de Kort et al., 2023), and 
education level (Contador et  al., 2023; Umarova et  al., 
2019) are each associated with an increased risk of PSCI. 
There is also high comorbidity between stroke and major 
neurocognitive disorders and mild cognitive decline (Bunn 
et  al., 2014). These brain health markers are typically 



3

H. Huygelier, M.J. Moore, A. Odom et al.	 Imaging Neuroscience, Volume 3, 2025

associated with impairment in memory, executive func-
tions, processing speed, and language (de Kort et  al., 
2023; Demeyere et al., 2021; Yanhong et al., 2013), which 
can occur alongside stroke-related cognitive impairments. 
The latter complicates the clinical picture of PSCI.

Although many studies have documented the impor-
tance of these factors for PSCI, there is a lack of studies 
investigating across-domain PSCI profiles and how such 
profiles link to lesion anatomy and premorbid brain health. 
That is, prior studies using data-driven strategies to inves-
tigate the structure of PSCI have either focused on sepa-
rate cognitive domains (Bonkhoff et al., 2021; Landrigan 
et al., 2021; Weaver et al., 2023), a global cognition out-
come (Buvarp et al., 2021; Keins et al., 2021; Ma et al., 
2024; Weaver et al., 2021), or have focused on a select 
group of stroke patients (such as first-ever stroke patients 
with good premorbid brain health) (Buvarp et  al., 2021; 
Corbetta et al., 2015; Keins et al., 2021; Ma et al., 2024). 
Given the high comorbidities in the clinical reality of 
stroke, it is important to disentangle distinct cognitive 
profiles and investigate to what extent such profiles align 
with specific lesion topographies versus pre-existing neu-
rovascular changes, especially in a clinical stroke sample.

The present study seeks to address this gap by using 
latent class analysis to investigate cognitive profiles in a 
large stroke cohort assessed with the Oxford Cognitive 
Screen (OCS). This approach allows to explore the struc-
ture of PSCI in a clinically representative stroke sample 
beyond the limitations of global cognitive screens 
(Demeyere et al., 2016). Specifically, our objectives were 
to (1) distinguish cognitive profiles after stroke, (2) assess 
and compare the interpretability of these profiles, and (3) 
evaluate the extent to which stroke lesion anatomy, pre-
morbid brain health, and demographic variables influ-
ence the structure of PSCI.

2.  MATERIALS AND METHODS

Data of 2172 stroke patients were aggregated from Bel-
gian, Italian, and UK databases (Demeyere et al., 2015, 
2016, 2019; Huygelier et al., 2022; Mancuso et al., 2018). 
These studies included all patients who were able to con-
centrate for 15–20 minutes (Supplementary Materials S1).

2.1.  Ethics statement

All patients provided informed consent and all proce-
dures followed the Helsinki declaration.

2.2.  Cognitive screening

Domain-specific impairments were assessed with three 
language versions of the Oxford Cognitive Screen (i.e., 

OCS, OCS-IT, OCS-NL) (Demeyere et  al., 2015, 2016; 
Huygelier et al., 2020, 2022; Mancuso et al., 2016, 2018). 
These OCS translations have each been validated in stroke 
patients (Demeyere et  al., 2015; Huygelier et  al., 2022; 
Mancuso et al., 2018). The OCS is designed to be inclusive 
for patients with common stroke-related impairments 
including aphasia, spatial neglect, primary visual, and 
motor impairments (Demeyere et al., 2015, 2016). The OCS 
consists of 10 subtasks indexing: language (picture nam-
ing, semantics, sentence reading), memory (orientation, 
verbal, and episodic memory), numerical cognition (writing 
numbers, calculation), praxis (imitating meaningless ges-
tures), and executive function (trail making)/attention (can-
cellation test). Detailed descriptions of OCS subtests are 
reported elsewhere (Demeyere et  al., 2015, 2016). All 
impairment classifications were made based on clinical 
thresholds which were age corrected for the OCS-NL 
(Huygelier et al., 2020) and OCS-IT (Mancuso et al., 2016).

2.3.  Neuroimaging data

All patients with lesion masks and behavioural data col-
lected within 45  days of stroke onset were included in 
neuroimaging analyses (n  =  515). Lesion maps were 
derived from acute (<31 days post-stroke) clinical neuro-
imaging (442 CT, 4 T1, 62 T2, 6 FLAIR) which were col-
lected in the UK OCS screening programmes (Demeyere 
et al., 2015, 2016). Previous research has demonstrated 
that neuroimaging collected within 31 days of stroke is 
able to support accurate lesion mapping analyses, even 
though the full extent of lesion damage may not yet be 
fully visible at very early (e.g., <1 day) imaging time points 
(Lansberg et  al., 2000; Mohr et  al., 1995; Moore et  al., 
2024). Previous studies have found that CT and MR yield 
comparable lesion mapping results and that both imag-
ing modalities can be used to accurately identify estab-
lished PSCI correlates (de Haan & Karnath, 2018; Moore, 
Demeyere et  al., 2024; Moore, Jenkinson et  al., 2023). 
Notably, a recent, large-scale simulation study (using a 
subset of the data reported here) compared the accuracy 
of lesion mapping analyses using CT- and MR-derived 
lesion masks. This study found that overall accuracy was 
low for both CT- and MR-derived analyses, but analyses 
using CT data were significantly more accurate in terms 
of target hits (e.g., detecting the critical voxel/area) and in 
terms of displacement from the target area/voxel relative 
to MR-based analyses (Moore, Jenkinson et al., 2023). In 
addition to this previous lesion mapping, guidelines and 
manuals explicitly encourage combining different imag-
ing modalities (CT and MR) to maximise the degree of 
overlap (i.e., statistical power) in lesion mapping (de Haan 
& Karnath, 2018). Patients with clear evidence of multi-
ple, temporally distinct lesions were excluded.
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Lesions were manually delineated by trained experts 
on axial slices using MRIcron. Native-space lesion masks 
were smoothed at 5  mm full-width at half-maximum in 
the z-direction, binarised (0.5 threshold), reoriented, 
warped into 1 × 1 × 1 mm stereotaxic space using Statis-
tical Parametric Mapping (Ashburner et  al., 2016) and 
Clinical Toolbox (Rorden et al., 2012) functions. This nor-
malisation approach uses combined linear and affine 
transformations coupled with nonlinear warping to Clini-
cal Toolbox templates (Ashburner et  al., 2016; Rorden 
et al., 2012) (scripts available at https://osf​.io​/mv2qf​/files​
/osfstorage). All resulting normalised scan and lesion files 
were visually inspected for quality. This normalisation 
procedure employs age-specific CT or MR templates 
(Rorden et  al., 2012). Exploratory analyses were con-
ducted to ensure behavioural results were consistent 
between the total sample and subset of patients with 
lesion data (Supplementary Materials, Supplementary 
Figs. S3.1 and S3.2).

To estimate the degree of disconnection within func-
tional networks caused by structural lesion damage, 
lesion masks were used to estimate the degree of dis-
connection between different cortical (and subcortical) 
areas caused by lesion damage. This approach is stan-
dard in cases where in vivo tractography data are not 
available, and are described in detail elsewhere (Griffis 
et al., 2021). Parcel-wise dysconnectivity statistics were 
generated to summarise the degree of disconnection 
across all cortical areas defined by the Schaefer–Yeo 
Atlas (100 parcels) (Yeh et al., 2018) and subcortical/cer-
ebellar areas in the AAL (Tzourio-Mazoyer et  al., 2002) 
and Harvard–Oxford atlases (35 parcels). The atlases 
define seven networks: Control, Default, Dorsal Attention, 
Limbic, Somatic Motor, Ventral Attention, and Visual net-
works as well as networks connecting subcortical/cere-
bellar structures (Schaefer et al., 2018). In cases where 
lesions intersect with a streamline (i.e., a connection 
between two parcels), the relevant streamline is consid-
ered to be disconnected (Griffis et  al., 2021). Network 
nodes correspond to each defined cortical areas, and 
network edges summarise the connections (streamlines) 
between each pair of nodes (Griffis et al., 2021). Network-
level disconnectivity was calculated as the proportion of 
streamlines which terminate (end or begin) in each pair of 
parcels that were disconnected (Griffis et al., 2021). Tract-
level structural disconnection was quantified by calculat-
ing the percent of streamlines within each of the 
HCP-842’s 70 white matter tracts which were discon-
nected by lesions.

Atrophy was assessed using the Global Cortical Atro-
phy (GCA) scale (Pasquier et al., 1996). The atrophy in 13 
brain regions was assigned a score of 0 (none), 1 (mild), 2 
(moderate), or 3 (severe). Where regions were obscured 

by stroke lesions, regions were assigned the score of the 
homologous region within the undamaged hemisphere. 
The severity of white matter lesions was determined 
using the Fazekas scale (Fazekas et  al., 2002). Deep 
white matter lesions were rated as 0 (absent), 1 (punctu-
ate foci), 2 (beginning confluence of foci), or 3 (large con-
fluent areas). Periventricular white matter lesions were 
rated as 0 (absent), 1 (symmetrical caps), 2 (smooth halo), 
or 3 (irregular hypoattenuations extending into deep 
white matter). Total GCA and Fazekas scores (n = 475) 
were calculated by adding all region scores (GCA 
range = 0–39, Fazekas range = 0–6). Both scales have 
been validated for use in CT (Hobden et al., 2024) and 
MR stroke imaging (Fazekas et al., 2002; Pasquier et al., 
1996). Given that Fazekas and GCA scores are derived 
from imaging, these measures were only available for 
patients with neuroimaging data.

2.4.  Statistical analyses

Data analysis was performed using R 4.0.2, python 3.9, 
and MATLAB R2022b. The specific packages employed 
in each analysis are reported in Supplementary Materials 
S2 and S3.

2.4.1.  Identifying distinct PSCI profiles

Latent class analysis (LCA) was used to identify common 
profiles of PSCI in a data-driven fashion. LCA assumes 
that the associations of the observed data arise from 
unobserved subgroups (i.e., classes) in the population. 
LCA is more powerful than k-means or hierarchical clus-
tering (Cleland et al., 2000; Porcu & Giambona, 2017), as 
it enables comparisons of models of different numbers of 
classes (Nylund-Gibson & Choi, 2018) and because it 
allows for class membership uncertainty (estimating the 
probability that an individual belongs to each identified 
class).

To establish the classes, only the binary impairment 
classifications on OCS subtests were included as 
observed variables (Bakk & Kuha, 2021). The LCA mod-
els used 10 repetitions (maximum of 50,000 iterations 
each) with different random starting values. The models 
were estimated including all partially available cases 
(Enders & Bandalos, 2001; Linzer & Lewis, 2011). To 
determine the ideal number of classes, models with n 
and n  +  1 classes were compared with the Bayesian 
Information Criterion (BIC), Akaike Information Criterion 
(AIC), and the adjusted Lo–Mendell–Rubin likelihood ratio 
test (Lo et  al., 2001; Nylund-Gibson & Choi, 2018; 
Petersen et al., 2019; Tein et al., 2013). A difference in the 
BIC and AIC larger than 2 is considered substantial evi-
dence in favour of the more complex model (Burnham & 

https://osf.io/mv2qf/files/osfstorage
https://osf.io/mv2qf/files/osfstorage
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Anderson, 2004). To investigate class distinguishability, 
the relative entropy (ranging from 0 = no separation to 1 = 
perfect separation) was calculated (Celeux & Soromenho, 
1996).

2.4.2.  Interpretation of PSCI profiles

To interpret LCA classes, the cognitive profiles of patients 
in each behavioural class were summarised. Class mem-
bers were always compared with non-members to iden-
tify unique characteristics of each class. Specifically, 
each class’s probability of impairment and 95% confi-
dence interval for each subtest were compared with that 
of patients belonging to other classes. Each class was 
assigned a summary label providing a qualitative descrip-
tion of the most prevalent impairment types within each 
class. This label is used to aid referencing and interpreta-
tion but is not intended as a formal definition.

Neuroanatomical characteristics were compared 
between class members and non-members. First, we 
estimated differences in proportions of left- and right-
hemispheric patients. Second, the ratio of lesion volume 
between class members and non-members was esti-
mated. Third, differences in GCA and Fazekas scores 
were estimated. In addition, differences in proportions of 
class members versus non-members in different age 
groups (≤60: 22% of patients, 61–80: 50% of patients, 
and >80: 28% of patients), education levels (<7: 17% of 
patients, 7–12: 54% of patients, and >12 years of school-
ing: 29% of patients), stroke chronicity groups (<3 weeks: 
73% of patients, ≥3 weeks post-stroke: 27% of patients), 
and sex were estimated. Model fits were satisfactory and 
all modelling details are reported in Supplementary Mate-
rials S2.

Mass-univariate voxel-based lesion analyses (VLSM) 
were conducted to evaluate whether classes were char-
acterised by distinct lesion profiles. Each of these analy-
ses included lesion volume as a covariate of no interest 
and employed permutation-based thresholds (2000 per-
mutations) to correct for multiple comparisons 
(alpha = .05) (de Haan & Karnath, 2018). These analyses 
were performed with NiiStat (neurolabusc, 2016) and only 
considered voxels which were impacted in at least 10 
patients (Supplemental Materials S2). Resultant signifi-
cant voxels clusters (>10 contiguous voxels) were com-
pared with anatomical atlases.

We also contrasted network disconnections of class 
members versus non-members, using a test that assumes 
that edges that differ between groups are clustered into 
components (i.e., a subnetwork of connected edges) 
(Gracia-Tabuenca & Alcauter, 2020). This approach 
increases statistical power relative to mass-univariate 
statistical comparisons (Kim et al., 2014; Zalesky et al., 

2010) by controlling the family-wise error at the subcom-
ponent rather than edge level. Following the NBS proce-
dure, we first identified a set of edges which had the 
strongest associations with class membership (supra-
threshold edges) (uncorrected p <  .01). To evaluate the 
quality of identifying our supra-threshold edges, we 
checked the differences in edge weights for the supra- 
and sub-threshold edges (Supplementary Materials S3). 
Then, these edges are entered into a permutation-based 
test (1000 permutations) that identifies statistically signif-
icant components (i.e., subnetwork of connected edges), 
estimating an FWE-corrected p-value for the sum of edge 
weights of the component. Then, we quantified network 
disconnection. An edge was considered part of a func-
tional network if at least one node belonged to the net-
work (e.g., both inter- and intra-network connections) 
(Supplementary Materials S3). The VLSM and network 
analyses were only conducted for classes which con-
tained at least 15 patients with available lesion data.

2.4.3.  Does lesion topography drive PSCI profiles?

Finally, we evaluated the extent to which lesion anatomy 
drove the LCA solution using multivariate similarity analy-
sis. Multivariate similarity analysis is a popular neuroimag-
ing analysis technique (Kriegeskorte & Kievit, 2013), which 
we applied here to determine to what extent patients who 
were behaviourally similar were also similar in terms of 
lesion anatomy. This analysis is an informative precursor to 
analyses aiming to predict specific behavioural profiles 
based on lesion data alone (or vice versa). If multivariate 
similarity analysis reveals that there is a high degree of 
similarity between lesion topographies within behavioural 
cluster members (relative to non-members), this indicates 
that it may be feasible to accurately predict profile mem-
bership based on lesion anatomy. However, if similarity 
analysis finds weak or negligible relationships between 
anatomy and profile membership, this indicates that lesion 
anatomy alone cannot provide an informative prediction of 
profile membership.

In our analysis, multivariate similarity analysis was 
used to determine the degree to which similarity in terms 
of profile membership (cognitive similarity) was associ-
ated with similarity in terms of lesion topography/discon-
nection (neuroanatomical similarity). To quantify cognitive 
similarity, we computed the distance between the class 
probabilities for each pair of participants. We also com-
puted neuro-anatomical (dis)similarity at the voxel, tract, 
and network levels. Then we assessed the association 
between the cognitive and the neuroanatomical dis-
tances (Fig. 1; Supplementary Materials S3).

The robustness of the similarity analysis was evalu-
ated across key patient subgroups. For example, pre-
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morbid brain health decline may reduce the association 
between lesion location and the cognitive profile (Rost 
et  al., 2022). In addition, haemorrhagic stroke patients 
can suffer from diffuse damage meaning that the relation-
ship between cognition and lesion location could be 
weaker in this subgroup (Sheppard et  al., 2022). Given 
that previous research has suggested that lesion location–
behaviour relationships are strongest early after stroke 
onset, we also evaluated how this association depended 
on time after stroke (de Haan & Karnath, 2018; Sheppard 
et al., 2022). For all associations, we performed a leave-
one-case-out sensitivity analysis which indicated robust 
results across subsamples.

3.  RESULTS

3.1.  Participants

Patients were assessed on average 19 days post-stroke 
(Mdn = 7, SD = 35.7). A total of 43% of patients had a 
left-hemispheric stroke, 50% had a right-hemispheric 
stroke, and 7% had a bilateral stroke. Most patients had 
an ischaemic stroke (81% ischaemic, 19% haemorrhage) 
and 45% were female. The average age of the patients 
was 71 years (SD = 13.6). The average years of formal 

education was 11 years (SD = 4). The lesion distribution 
and tract disconnections of patients with a lesion map 
are visualised in Figure  2. Participant demographics, 
including testing times and lesion descriptions, are 
reported in Table 1.

3.2.  PSCI can be distinguished into 5 or 13 profiles

Two candidate models of distinct cognitive profiles were 
retrieved: a 5-class model (best fitting according to the 
BIC index) and a 13-class model (best fitting according to 
the AIC and Likelihood Ratio Test) (Supplementary Mate-
rials S2). The relative entropy was .64, suggesting that 
there is a moderate level of class separability. The proba-
bility that an individual was a member of their respective 
class was on average 84% for the 5-class model (SD = 16) 
and 74% for the 13-class model (SD = 19). The probabil-
ity that an individual was a member of another class was 
on average 4% for the 5-class model (SD = 7) and 2% for 
the 13-class model (SD = 4). The relationship between 
the two solutions is complex, with some classes mapping 
better onto each other than others across the solutions 
(Supplementary Fig.  S2.6). To interpret the models, we 
inspected the probability of impairment per OCS subtest 

Fig. 1.  Overview of the analysis. Top left (blue) illustrates an OCS profile of a single case, the LCA model, and output we 
obtain for case A from the LCA model. Bottom left (purple) illustrates preprocessing of clinical CT or MR scans. The right 
side (green) illustrates the association of cognitive profiles, neuroanatomy, and demographic variables. For the multivariate 
similarity analysis, a distance is computed for each pair of cases (example of three cases) and the association of cognitive 
and neuroanatomical distances was then calculated.
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for class members versus non-members and their neuro-
anatomical and demographic characteristics (Figs. 3–10; 
Tables 2 and 3).

3.3.  Interpretation of the five profiles

Class 1 (“Memory”, n = 469) was characterised by a 
comparably higher rate of numerical cognition and 
memory impairments coupled with an absence of visual 
field impairment and left egocentric neglect. Class 1 
members were more likely left- than right-hemispheric 
stroke patients (ELH = .54, 99% CI [.48, .61], ERH = .40, 
99% CI [.34, .47]) and had higher GCA ratings. Class 1 
was associated with a single component of 233 net-
work edges which were more disconnected relative to 
others. This component consisted of edges spread 
across all networks. Class 1 was not associated with 

any voxel clusters. Class 1 members were more likely to 
be lower educated.

Class 2 (“Left Neglect”, n = 288) included primarily 
right hemisphere stroke patients (ELH = .11, 99% CI [.06, 
.16], ERH = .81, 99% CI [.73, .87]) with left egocentric and 
allocentric neglect. Class 2 members had comparably 
higher rates of visual field and executive function defi-
cits. They were characterised by larger lesions and 
worse premorbid brain health. VLSM analysis identified 
two clusters of significant voxels associated with this 
class, impacting the right lateral occipital cortex, insular 
cortex, and angular gyrus (150 cm3, MNI =  [46, -4, 2]) 
and the right middle frontal gyrus (0.13 cm3, MNI = [30, 
14, 30]). Class 2 was associated with a network of 773 
disconnections, the largest portion of which were within 
the right-hemispheric visual network (18% of all visual 
connections).

Class 3 (“Language”, n = 320) was characterised by 
widespread impairment affecting language, numerical 
cognition, memory, and praxis. Class 3 was associated 
with larger lesions and left-hemisphere stroke (ELH = .60, 
99% CI [.52, .66], ERH = .35, 99% CI [.29, .43]). Lesions in 
four voxel clusters in the left insula and putamen 
(16.3  cm3, MNI  =  [-32, 4, 8]), left precentral gyrus 
(0.35 cm3, MNI = [-46, 0, 42]), the left middle frontal gyrus 
(0.24 cm3, MNI = [-40, 24, 26]), and the left white matter 
(0.11  cm3, MNI  =  [-28, -60, 18]) were associated with 
Class 3. Class 3 was associated with a single network of 
429 disconnections with the left-hemispheric default 
mode network most impacted (12% of all default mode 
connections). Class 3 members were also less likely 
younger and more likely lower educated.

Class 4 (“No or mild impairment”, n  =  703) was 
characterised by a low probability of impairment. Class 4 
members had smaller lesions, better premorbid health, 
were more likely younger, and higher educated. Class 4 
members were equally likely left- or right-hemispheric 

Fig. 2.  Lesion overlay and tract disconnections (n = 515). Number of patients with ≥50% disconnection in a tract. MNI 
slices -8–63 are presented in neurological convention (right hemisphere presented on the right side).

Table 1.  Patient characteristics by country.

UK  
(n = 1206)

IT  
(n = 684)

BE  
(n = 282)

Age M 72.4 71.1 64.8
Mdn 75 73 67
SD 13.6 12.8 14
Min-Max 18–98 24–96 21–91

Years of  
education

M 11.7 8.6 12.4
Mdn 11 8 12
SD 2.9 4.5 3.6
Min-Max 5–30 1–25 5–25

Sex % Female 45% 45% 39%

Days since  
stroke

M 8.7 37.6 22.7
Mdn 4 20 15
SD 14.4 54.7 24.4
Min-Max 0–208 0–567 0–182

Stroke type % Ischaemic 84% 77% 81%

Lesion side % Left 46% 40% 38%
% Right 48% 56% 44%
% Bilateral 5% 4% 18%
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stroke patients (ELH =  .47, 99% CI [.42, .52], ERH =  .45, 
99% CI [.40, .50]).

Finally, Class 5 (“Attention”, n = 392) was character-
ised by non-lateralised cancellation task impairment 
accompanied by low probabilities of impairment across all 
other subtests. Class 5 members were more likely right-
hemisphere stroke patients (ELH = .28, 99% CI [.22, .35], 
ERH = .64, 99% CI [.57, .71]) and less likely lower educated.

There was no significant voxel cluster or network-level 
disconnection pattern associated with Class 4 or Class 5.

3.4.  Interpretation of the 13 profiles

3.4.1.  Left-lateralised profiles

Class 1 (“Right-sided neglect”, n = 91) was character-
ised by right egocentric neglect and spared performance 

on the visual field test. In addition, Class 1 members 
exhibited a higher rate of sentence reading and numerical 
cognition impairment. Class 1 members were more likely 
left-hemispheric stroke patients (ELH = .66, 99% CI [.50, 
.80], ERH = .27, 99% CI [.14, .42]) with higher GCA ratings 
and a lower education level. There were insufficient lesion 
maps (n = 13) to investigate the association with lesion 
anatomy.

Class 6 (“Global language & memory”, n = 72) was 
characterised by impairments on language (picture nam-
ing and sentence reading), verbal memory, and number 
writing. Class 6 had spared performance on the visual 
field test, and no left-sided egocentric neglect. Class 6 
members were more likely left-hemispheric patients 
(ELH = .71, 99% CI [.57, .84], ERH = .24, 99% CI [.13, .38]). 
A cluster of significant voxels including the left insular 

Fig. 3.  Cognitive profiles of the 5-class model. The probability of impairment per OCS subtest and its 95% confidence 
interval are depicted of class members (colour) versus others (grey). Nam = OCS picture naming task, Sem = OCS 
semantics tests, Read = OCS sentence reading task, Num = OCS number writing task, CAL = OCS calculation task, 
ORT = OCS orientation task, VM = OCS verbal memory task, EM = OCS episodic memory task, PR = OCS praxis test, 
Canc = OCS cancellation total score, Ego L = OCS left egocentric neglect, Obj L = OCS left object-level neglect, Ego 
R = OCS right egocentric neglect, Obj R = OCS right object-level neglect.
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Fig. 4.  Lesion correlates of the 5-class model. Top rows depict the lesion overlay (colours represent the proportion 
patients in a class with a lesion at a specific voxel). A black contour indicates a region of significant voxels. The Bottom 
row: 1% strongest network-level disconnections which were part of a statistically significant component of edges. *Non-
significant strongest disconnections depicted. The colour of the edges represents the mean proportion disconnection of 
class members. Neuroimaging is presented in neurological convention.
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Fig. 5.  Cognitive profiles of the left-lateralised profiles of the 13-class model. The probability of impairment per OCS 
subtest and its 95% confidence interval are depicted of class members (colour) versus others (grey). Nam = OCS 
picture naming task, Sem = OCS semantics tests, Read = OCS sentence reading task, Num = OCS number writing task, 
CAL = OCS calculation task, ORT = OCS orientation task, VM = OCS verbal memory task, EM = OCS episodic memory 
task, PR = OCS praxis test, Canc = OCS cancellation total score, Ego L = OCS left egocentric neglect, Obj L = OCS left 
object-level neglect, Ego R = OCS right egocentric neglect, Obj R = OCS right object-level neglect.

cortex, putamen, and inferior frontal gyrus (pars opercu-
laris) (volume = 28.8 cm3, peak z-score at MNI = [-30, 6, 
12]), and a second cluster impacting the left insular cor-
tex and left central opercular cortex (0.30 cm3, MNI = [-30, 
-20, 26]) was associated with Class 6. Class 6 was char-
acterised by a component of 360 disconnections encom-

passing several networks, among which the left default 
mode network was most disconnected (12%).

Class 12 (“Expressive language”, n = 198) was char-
acterised by a low probability of impairment across all 
tasks, except for sentence reading, number writing, and 
picture naming, with mostly intact memory performance 
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compared with class 6. Class 12 membership was asso-
ciated with left-hemispheric stroke (ELH  =  .62, 99% CI 
[.51, .72], ERH = .33, 99% CI [.23, .43]) and two voxel clus-
ters, one centred in the left Heschl’s Gyrus (0.19  cm3, 
MNI = [-42, -20, 8]) and the second within the left planum 
polare (0.18 cm3, MNI = [-44, -10, -6]). Class 12 was char-
acterised by a single component of 186 disconnections, 
with the left-hemispheric default mode network being the 
most impacted (7%). Class 12 patients were more likely 
part of the middle education level than others.

Class 13 (“Severe language & neglect”, n  =  107) 
was characterised by high probabilities of impairment 
across language, numerical cognition, memory, praxis, 
visual field impairments, and right-sided neglect. Class 

13 included mainly left-hemispheric stroke patients 
(ELH = .69, 99% CI [.58, .80], ERH = .26, 99% CI [.16, .37]) 
with higher GCA ratings. Class 13 was associated with 7 
left-hemispheric voxel clusters: precentral gyrus 
(0.55 cm3, MNI = [-34, 2, 22]), inferior frontal gyrus (pars 
triangularis) (0.34  cm3, MNI  =  [-58, 30, 10]), insula 
(0.14 cm3, MNI =  [-36, 6, -4]), hippocampus (0.12 cm3, 
MNI = [-36, -22, -12]), inferior frontal gyrus (pars opercu-
laris) (0.10 cm3, MNI = [-58, 20, 24]), and two clusters in 
the white matter (0.96 cm3, MNI = [-40, -40, 2]; 0.88 cm3, 
MNI =  [-40, -36, -6]). Class 13 was characterised by a 
component of 266 disconnections across many net-
works, among which the left dorsal attention network 
was most disconnected (8%).

Fig. 6.  Lesion correlates of the left-lateralised profiles of the 13-class model. Top rows depict the lesion overlay (colours 
represent the proportion patients in a class with a lesion at a specific voxel). A black contour indicates a region of 
significant voxels. The Bottom row: 1% strongest network-level disconnections which were part of a statistically significant 
component of edges. *Non-significant strongest disconnections depicted. The colour of the edges represents the mean 
proportion disconnection of class members. Neuroimaging is presented in neurological convention.
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Fig. 7.  Cognitive profiles of the right-lateralised profiles of the 13-class model. The probability of impairment per 
OCS subtest and its 95% confidence interval are depicted of class members (colour) versus others (grey). Nam = OCS 
picture naming task, Sem = OCS semantics tests, Read = OCS sentence reading task, Num = OCS number writing task, 
CAL = OCS calculation task, ORT = OCS orientation task, VM = OCS verbal memory task, EM = OCS episodic memory 
task, PR = OCS praxis test, Canc = OCS cancellation total score, Ego L = OCS left egocentric neglect, Obj L = OCS left 
object-level neglect, Ego R = OCS right egocentric neglect, Obj R = OCS right object-level neglect.

3.4.2.  Right-lateralised profiles

Class 3 (“Severe left-sided visuospatial impairment”, 
n = 69) mainly included right-hemispheric stroke patients 
(ELH = .19, 99% CI [.08, .33], ERH = .78, 99% CI [.62, .90]) 
who had impairments on tests involving a visual compo-
nent. Class 3 was associated with larger lesions, and 9 

significant voxel clusters mainly impacting the right visual 

cortex. The largest of these voxel clusters (70.14 cm3 vol-

ume) impacted the lateral occipital cortex (inferior divi-

sion), middle temporal gyrus (posterior division), and the 

intracalcarine cortex (MNI = [24, -80, 6]). The remaining 

voxel clusters were centred in the right middle frontal/



13

H. Huygelier, M.J. Moore, A. Odom et al.	 Imaging Neuroscience, Volume 3, 2025

precentral gyri (0.86 cm3, MNI = [32, -6, 26]), amygdala 
(0.32 cm3, MNI = [20, -6, -10]), precentral gyrus (0.29 cm3, 
MNI  =  [56, 4, 32], supramarginal gyrus (0.29  cm3, 
MNI = [66, -36, 30]), inferior frontal gyrus pars opercularis 
(0.27  cm3, MNI  =  [60, 16, 6]), insular cortex (0.15  cm3, 
MNI = [32, -2, 14]), hippocampus (0.14 cm3, MNI = [30, 
-18, -16]), and putamen (0.13 cm3, MNI =  [26, -4, 10]). 
Class 3 was associated with a component of 360 
network-level disconnections with the right visual net-
work being the most impacted (18%).

Class 8 (“Severe left-sided neglect”, n = 147) was 
characterised by left egocentric and allocentric neglect, 
coupled with lower probabilities of impairment on picture 
naming and verbal recall tasks. Class 8 patients primarily 
had right hemisphere lesions (ELH = .12, 99% CI [.06, .21], 
ERH = .77, 99% CI [.67, .86]) and worse premorbid brain 

health. Class 8 was associated with a significant cluster 
of voxels in the right insular cortex and superior temporal 
gyrus (0.62 cm3, MNI = [48, -10, 0]). Class 8 was associ-
ated with a component of 476 disconnections among 
which the right visual network was most disconnected 
(12%).

Class 9 (“Attention”, n = 210) was characterised by 
non-lateralised impairment on the cancellation test co-
occurring with low impairment rates across other tests. 
The majority of patients had a right-hemispheric stroke 
(ELH = .33, 99% CI [.24, .43], ERH = .60, 99% CI [.49, .69]) 
and Class 9 members were less likely lower educated. 
Class 9 was not significantly associated with any voxels 
nor network-level disconnections.

Class 10 (“Left-sided egocentric neglect”, n = 151) 
was characterised by left-sided egocentric neglect 

Fig. 8.  Lesion correlates of the right-lateralised profiles of the 13-class model. Top rows depict the lesion overlay 
(colours represent the proportion patients in a class with a lesion at a specific voxel). A black contour indicates a region of 
significant voxels. The bottom row: 1% strongest network-level disconnections which were part of a statistically significant 
component of edges. *Non-significant strongest disconnections depicted. The colour of the edges represents the mean 
proportion disconnection of class members. Neuroimaging is presented in neurological convention.
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coupled with low impairment rates on other tasks mostly 
due to right-hemispheric stroke (ELH = .13, 99% CI [.07, 
.22], ERH = .80, 99% CI [.70, .88]). Class 10 was associ-
ated with significant voxel clusters in the right putamen, 
thalamus and white matter (3.88 cm3, MNI = [22, -18, 18]), 
right precentral gyrus (0.08 cm3, MNI = [44, -10, 32]), and 
postcentral gyrus (0.08 cm3, MNI = [44, -16, 32]). Class 
10 members had a subnetwork of 493 disconnections 
among which the ventral attention network in the right 
hemisphere was most disconnected (11%).

3.4.3.  Non-lateralised profiles

Finally, there were five non-lateralised profiles (Fig.  6) 
which were not significantly associated with lesion side, 
location, and network disconnections.

Class 2 (“Potential Premorbid cognitive impair-
ment”, n = 199) was characterised by moderate impair-
ment probabilities on memory tasks or the cancellation 
task. Notably, Class 2 members had worse premorbid 

brain health. Class 2 was not included in VLSM, as there 
was insufficient lesion overlap.

Class 4 (“No or mild impairment”, n  =  656) was 
characterised by a low probability of impairment across 
all subtests. Class 4 members had significantly smaller 
lesions, better premorbid brain health, more likely to be 
younger, and higher educated.

Class 5 (“Mild right-sided neglect”, n  =  23) was 
characterised by right-sided egocentric neglect. How-
ever, Class 5 consisted of few patients and, therefore, 
had a high uncertainty regarding the impairment proba-
bilities and associated covariates.

Class 7 (“Low cognitive reserve”, n = 156) was char-
acterised by higher probabilities of impairment within the 
numerical and memory domains. Class 7 patients had 
higher GCA ratings and were more likely lower educated. 
There was insufficient lesion overlap to examine the rela-
tionship with lesion location.

Class 11 (“Executive impairment”, n = 93) was char-
acterised by executive function impairment which 

Fig. 9.  Cognitive profiles of the non-lateralised profiles of the 13-class model. The probability of impairment per OCS 
subtest and its 95% confidence interval are depicted of class members (colour) versus others (grey). Nam = OCS 
picture naming task, Sem = OCS semantics tests, Read = OCS sentence reading task, Num = OCS number writing task, 
CAL = OCS calculation task, ORT = OCS orientation task, VM = OCS verbal memory task, EM = OCS episodic memory 
task, PR = OCS praxis test, Canc = OCS cancellation total score, Ego L = OCS left egocentric neglect, Obj L = OCS left 
object-level neglect, Ego R = OCS right egocentric neglect, Obj R = OCS right object-level neglect.
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Fig. 10.  Lesion correlates of the non-lateralised profiles of the 13-class model. Top rows depict the lesion overlay 
(colours represent the proportion patients in a class with a lesion at a specific voxel). A black contour indicates a region of 
significant voxels. The Bottom row: non-significant strongest disconnections depicted. The colour of the edges represents 
the mean proportion disconnection of class members. Neuroimaging is presented in neurological convention.

occurred in the absence of neglect and visual field impair-

ments. Class 11 patients had higher GCA ratings, were 

less likely acute stroke patients, and more likely lower edu-

cated. There were not enough lesion maps (n = 9) available 

to assess Class 11’s relationship with lesion location.

3.5.  Lesion neuroanatomy does not fully explain 
PSCI profiles

Last, we evaluated the extent to which the cognitive  
profiles as identified by the LCA model were driven  
by lesion neuroanatomy (Fig.  1). First, cognitive and 
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neuroanatomical similarity was evaluated for all patients 
with a lesion map. Within this group, all lesion metrics 
were significantly positively associated with cognitive 
similarity (Fig. 11). Associations of network-level discon-
nectivity (r(5141) = .16, 95% CI [.15, .17]) and lesion vol-
ume (r(514) = .15, 95% CI [.14, .15]) were highest, followed 
by tract disconnections (r(514) =  .11, 95% CI [.11, .12]) 
and lesion location (r(514) = .04, 95% CI [.03, .04]). How-
ever, these associations were small (<.20) (Gignac & 
Szodorai, 2016) indicating that the similarity in cognitive 
profiles was only partially explained by similarity in lesions 
and their corresponding disconnections.

Next, analyses were conducted to evaluate whether 
these results were modulated by premorbid brain health 
(i.e., Global Cortical Atrophy Score + Fazekas score), the 
type of stroke damage (e.g., haemorrhages vs. ischaemic 
stroke), and the time between stroke and testing. Within 
premorbid brain health analyses, the association between 
cognition and network-level disconnections was very low 
in the severe group (r(92) =  .04, 95% CI [.01, .07]) and 

1  The number of patients on which the association was based.

moderate in the two groups with less severe atrophy and 
white matter lesions (mild: r(94) = .24, 95% CI [.21, .26], 
moderate: r(89) = .28, 95% CI [.26, .31]) (Fig. 11). Lesion 
location had the highest association with cognitive pro-
files in the mild brain health group (mild: r(94) = .11, 95% 
CI [.08, .13], moderate: r(89) = -.04, 95% CI [-.06, -.02], 
severe: r(92) = .02, 95% CI [.00, .04]). Lesion volume had 
the highest association with cognitive profiles for the 
moderate brain health group (moderate: r(89) = .28, 95% 
CI [-.26, .31], mild: r(94) = .16, 95% CI [.14, .19], severe: 
r(92) =  .14, 95% CI [.11, .16]). These results suggest a 
stronger association between lesion location (and corre-
sponding tract and network-level disconnections) with 
the cognitive profile in patients with less severe atrophy 
and white matter lesions. In the group of patients with 
more severe atrophy and white matter lesions, lesion vol-
ume was the best predictor of cognitive profiles, sug-
gesting that severity of impairments may become more 
important than the type of impairment.

For time since stroke, the association of cognitive simi-
larity and disconnection profile was similar between the 
hyper-acute stroke patients (<7 days) (r(344) = .15, 95% CI 

Table 2.  Characteristics of the 5-class solution.

Class 1 Class 2 Class 3 Class 4 Class 5

Lesion Side (Proportion) L 0.18,
[0.10, 0.25]

-0.36,
[-0.42, -0.29]

0.24,
[0.15, 0.33]

0.09,
[0.03, 0.15]

-0.15,
[-0.23, -0.07]

R -0.16,
[-0.24, -0.08]

0.35,
[0.27, 0.41]

-0.22,
[-0.30, -0.13]

-0.10,
[-0.16, -0.03]

0.14,
[0.05, 0.22]

B -0.02,
[-0.05, 0.02]

0.02,
[-0.03, 0.08]

-0.03,
[-0.06, 0.02]

0.01,
[-0.02, 0.05]

0.01,
[-0.03, 0.06]

Lesion Volume 0.72,
[0.35, 1.43]

3.57,
[1.49, 7.69]

2.11,
[1.05, 4.87]

0.4,
[0.22, 0.74]

1,
[0.44, 2.08]

Stroke Time (Acute) 0,
[-0.06, 0.07]

0,
[-0.09, 0.07]

-0.05,
[-0.13, 0.03]

0.03,
[-0.03, 0.08]

0.02,
[-0.05, 0.09]

GCA 0.16,
[0.09, 0.22]

0.28,
[0.19, 0.36]

0.02,
[-0.08, 0.12]

-0.25,
[-0.30, -0.19]

-0.02,
[-0.09, 0.04]

Fazekas 0.03,
[-0.17, 0.2]

0.38,
[0.17, 0.58]

-0.01,
[-0.27, 0.26]

-0.25,
[-0.42, -0.11]

0.05,
[-0.14, 0.25]

Age 18–60 -0.06,
[-0.11, 0]

-0.01,
[-0.08, 0.06]

-0.07,
[-0.12, -0.01]

0.12,
[0.07, 0.17]

0.02,
[-0.04, 0.08]

61–80 -0.01,
[-0.08, 0.06]

0,
[-0.08, 0.08]

-0.07,
[-0.15, 0.02]

0.06,
[0, 0.12]

0.03,
[-0.05, 0.1]

>80 0.07,
[0, 0.14]

0.01,
[-0.07, 0.1]

0.14,
[0.05, 0.21]

-0.17,
[-0.22, -0.12]

-0.04,
[-0.11, 0.03]

Education <7 0.12,
[0.05, 0.19]

-0.01,
[-0.09, 0.08]

0.19,
[0.11, 0.28]

-0.16,
[-0.21, -0.12]

-0.13,
[-0.18, -0.07]

7–12 -0.04,
[-0.11, 0.04]

0.07,
[-0.03, 0.16]

-0.12,
[-0.21, -0.03]

0.02,
[-0.04, 0.09]

0.06,
[-0.03, 0.15]

>12 -0.08,
[-0.14, -0.02]

-0.06,
[-0.13, 0.03]

-0.07,
[-0.14, 0.01]

0.14,
[0.08, 0.2]

0.06,
[-0.01, 0.15]

Sex (Proportion Male) -0.05,
[-0.12, 0.02]

0.02,
[-0.07, 0.11]

-0.08,
[-0.17, -0.01]

0.05,
[0, 0.11]

0.05,
[-0.02, 0.13]

Note. Significant contrasts at the .01 level indicated in bold. L = left, R = right, B = bilateral.
Estimated median difference of class members versus others and 99% credible intervals. Estimates for categorical variables reflect the 
difference in proportions between class members and others. Estimates for non-categorical variables reflect the difference in the value 
between class members and others. For lesion volume, the ratio between class members and others is reported.
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[.14, .16]) and patients tested later after stroke (r(59) = .17, 
95% CI [.14, .21]). The group tested in between 1- and 
2-week post-stroke had the highest association (r(66)  = 
27, 95% CI [.25, .29]). As time after stroke increased, the 
association with lesion volume increased, progressing 
from .16 (95% CI [.15, .17]) to .20 (95% CI [.17, .23]), while 
the association with lesion location decreased from .04 
(95% CI [.04, .05]) to .00 (95% CI [-.03, .04]).

Last, we assessed the associations between cognitive 
and neuroanatomical similarity in haemorrhagic versus 
ischaemic stroke patients. The disconnection profile had 
a similar association with cognition in both groups (hae-
morrhage: r(78)  =  .19, 95% CI [.16, .23], ischaemic: 
r(257) = .21, 95% CI [.20, .22]). Lesion volume was more 
strongly associated with cognition in the ischaemic 
(r(257) = .21, 95% CI [.20, .22]) than in the haemorrhagic 
group (r(78) = .11, 95% CI [.08, .14]), while lesion location 
was less strongly associated with cognition in the isch-
aemic (r(257) = .02, 95% CI [.00, .03]) than in the haemor-
rhagic group (r(78) = .12, 95% CI [.09, .15]).

4.  DISCUSSION

This study’s results indicate that patterns of PSCI can be 
captured by underlying behavioural classes, and that 

these classes cannot be entirely explained by differences 
in lesion anatomy. This study used data-driven analyses 
to identify viable class solutions (5-class and 13-class). 
While classes were differentially associated with broad 
anatomical characteristics, lesion anatomy alone was 
insufficient to explain class separation. Overall, these 
results provide novel insight into the underlying structure 
of PSCI impairment, providing important theoretical 
groundwork necessary to support future translational 
work and theoretical research.

4.1.  Interpretation of cognitive profiles yielded by 
simple and complex class solutions

This investigation yielded two viable distinctions of PSCI 
profiles: a 5- and a 13-class solution. Some aspects of the 
simpler, 5-class solution are comparable with the PCA 
solutions reported by Corbetta et al. (2015) and Bisogno 
et al. (2021), but there are also key differences. That is, our 
5-class solution captures two profiles of classic cognitive 
deficits which occur following left- and right-lateralised 
stroke (left stroke with aphasia, right stroke with neglect). 
However, our 5-class solution also captures profiles that 
do not represent such classical deficits. For example, 
class 1 included patients with non-language impairments 

Fig. 11.  Associations of cognitive and neuro-anatomical similarity (lesion overlap, lesion volume, tract- and network 
disconnections). The error bars represent the 95% confidence intervals of the correlation. The small dots outside the error 
bars represent the extreme correlations based on a leave-one-out procedure to assess influential observations.
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(e.g., memory, numerical cognition) while class 5 captured 
right hemisphere (and some left hemisphere) patients with 
non-lateralised attention deficits without neglect. Impor-
tantly, our 5-class solution also reflects that not all stroke 
survivors exhibit severe stroke-related cognitive impair-
ment (Class 4). This class was associated with smaller 
lesions, better premorbid health, younger age, and higher 
education levels, highlighting the protective role of brain 
and cognitive reserve (Casolla et  al., 2019; Contador 
et al., 2023; Dacosta-Aguayo et al., 2014; Stebbins et al., 
2008; Umarova, 2017). Importantly, this class cannot be 
conceptualised as representing patients without cognitive 
impairment as many patients in class 4 still exhibited cog-
nitive impairment. Given the diversity of lesions and cog-
nitive impairments in this class, considering a more 
detailed class structure provides more insight into differ-
ent subtypes of comparatively mild PSCI.

The 13-class solution provided a richer perspective on 
PSCI, distinguishing 4 left-lateralised, 4 right-lateralised 
and 5 non-lateralised profiles. These non-lateralised pro-
files capture important variability in PSCI profiles, partic-
ularly with respect to premorbid cognitive status. In the 
complex solution, the right-lateralised profiles were char-
acterised by different types of visual-attentional impair-
ments. Specifically, class 3 captured severe and global 
neglect and visual field impairment which impacted per-
formance on all tasks involving a visual component. This 
profile was linked to large lesions impacting regions 
within (and connections between) early visual areas and 
regions of the posterior parietal cortex traditionally asso-
ciated with neglect (Moore, Milosevich et al., 2023). This 
captures the common clinical presentation of comorbid 
neglect and visual field impairment which can be difficult 
to behaviourally distinguish. A second group (class 8) 
exhibited left egocentric and allocentric neglect and was 
associated with lesions in the right insula and superior 
temporal gyrus (both regions associated with neglect; 
Chechlacz et al., 2012; Molenberghs et al., 2012; Moore, 
Milosevich et al., 2023). Interestingly, this group exhibited 
worse premorbid brain health compared with other 
groups. This result aligns with previous work suggesting 
that older patients with worse brain reserve were more 
likely to have spatial neglect (Umarova, 2017) and adds 
to this that patients with worse premorbid brain health 
have a higher risk of presenting multiple comorbid, rather 
than isolated neglect deficits.

The third right-hemisphere class (Class 10) captured 
cases of left egocentric neglect which occurred with few 
comorbidities, and was linked to lesions in the right 
putamen, thalamus, and pre- and postcentral gyri, 
which have previously been associated with directional 
motor biases and egocentric neglect (Grimsen et  al., 
2008; Sapir et  al., 2007). Interestingly, this class was 

mainly linked to disconnection in the right ventral atten-
tion network, while the other neglect classes were 
mainly linked to visual network disconnection. Taken 
together, the three left-neglect classes align with previ-
ous conceptualisations of neglect as a deficit which rep-
resents a common symptom of multiple underlying 
causes (Husain et al., 2001; Mattingley et al., 1998). The 
last right-hemisphere class (class 9) included patients 
with non-lateralised attentional impairment. This class is 
analogous to class 5 from the 5-class model as it simi-
larly includes patients who likely suffer from general 
attentional deficits.

In terms of left-hemisphere profiles, two classes cap-
tured patients with differing severity of aphasia. Class 6 
represented the classical, pure aphasia profile (anomia, 
alexia, and agraphia) and was accordingly associated 
with large lesions affecting key language areas (Friederici, 
2015; Oh et al., 2014; Viñas-Guasch & Wu, 2017). Class 
13 included patients with aphasia occurring alongside 
widespread multi-domain impairments. In line with past 
work, this globally impaired group exhibited worse pre-
morbid brain health (Casolla et al., 2019; Stebbins et al., 
2008) and was associated with large lesions affecting 
language and memory regions (Lim & Alexander, 2009). 
Notably, these two profiles do not align with classic apha-
sia distinctions (Landrigan et  al., 2021; Wilson & Hula, 
2019). This finding suggests that subtypes which are 
often prioritised in the neuropsychological literature may 
capture theoretically important special cases rather than 
representing the symptom variability characteristic of the 
clinical population.

The third left-hemisphere group (Class 1) was charac-
terised by right-lateralised neglect. We have previously 
found interhemispheric disconnections to be associated 
with right neglect (Moore et al., 2021), and the present 
study expands on this with interhemispheric disconnec-
tions mainly between left frontotemporal areas and right 
posterior parietal regions. The remaining group (Class 12) 
included patients with left hemisphere strokes and com-
paratively mild rates of language and numerical cognition 
impairment.

The remaining five cognitive profiles were not later-
alised and were not associated with any significant lesion 
correlates but reflect the importance of premorbid brain 
health. First, Class 4 was characterised by low rates of 
cognitive impairments coupled with better premorbid 
brain health, younger age, and higher education levels 
(analogous to Class 4 from the 5-class solution). Class 2 
was characterised by memory impairments and non-
lateralised cancellation task impairment, likely capturing 
pre-morbid cognitive decline (Yanhong et  al., 2013). 
Class 11 included patients with executive function impair-
ment. Given that this class exhibited lower lesion sizes 
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coupled with worse atrophy and white matter integrity, it 
is likely that executive dysfunction is more closely related 
to general brain health than to the acute stroke event. 
Class 5 captured a small portion of patients who exhib-
ited right-lateralised neglect coupled with memory and 
praxis impairments. Finally, class 7 captured patients 
with numerical cognition and memory impairment who 
exhibited lower education levels and worse atrophy. 
These results highlight that the clinical picture of 
premorbid impairment and cognitive reserve can be dis-
tinctly and qualitatively different from classical PSCI pro-
files which are more linked to lateralised lesions.

4.2.  Cognitive profiles cannot be fully explained by 
lesion anatomy

Although several profiles mapped onto lesion locations, 
lesion location itself played a limited role in explaining pro-
files, as lesion similarity was only weakly associated with 
cognitive similarity. Our results highlight key factors which 
limit the explanatory power of lesion location. Mainly, 
lesion location was less predictive of cognitive similarity 
for patients with worse premorbid health. This finding 
aligns with past work suggesting that the impact of stroke 
lesions may be modulated by general brain health (Hobden 
et al., 2024; Rost et al., 2022). For the mild brain health 
group, the stroke-induced disconnections were the best 
predictor of the cognitive profile. Lesion volume was less 
important, potentially reflecting patient’s ability to com-
pensate for the impact of stroke as white matter tracts are 
more intact. In the moderate brain health group, stroke-
induced disconnections and lesion volume were equally 
strong predictors of the cognitive profile. Lesion volume 
may play a more pronounced role for these patients, as 
they are less able to compensate for the stroke impact. 
Last, in the severe brain health group, where white matter 
tracts are severely impacted by white matter lesions, the 
stroke-induced functional disconnections have little pre-
dictive strength anymore. In this group, diffuse brain injury 
which has accumulated over time results in cognitive pro-
files that are no longer typical of focal strokes. The reduced 
impact of lesion volume for this group may also reflect the 
increasing role of cognitive impairment related to non-
focal vascular changes in the brain.

Additionally, lesion anatomy was a better predictor of 
the PSCI profile in patients assessed in the hyper-acute 
phase (e.g., <7  days post-stroke). This non-linear rela-
tionship is likely driven by non-linear patterns of cognitive 
recovery occurring within the very early period post-
stroke (e.g., steep initial recovery, followed by slower 
changes; Nijboer et al., 2013). This recovery dynamic 
make brain–behaviour relationships less clearly defined 
as time progresses following stroke (de Haan & Karnath, 

2018; Karnath & Rennig, 2017). Additionally, some 
patients may receive targeted PSCI therapies. As therapy 
approaches (and individual response to treatment) differ 
dramatically, variance explained by anatomy may reduce 
as therapy time increases. Notably, disconnection pat-
terns were identified as an important driver of cognitive 
variability as lesion-induced disconnections at the tract 
level and network level were stronger predictors of the 
PSCI profile than lesion location itself. This finding is in 
line with past studies illustrating that disconnection met-
rics help account for important variability in post-stroke 
brain–behaviour relationships (Griffis et  al., 2021; 
Salvalaggio et al., 2020).

This study employed routinely collected data including 
a short cognitive screen and clinical neuroimaging. While 
this approach maximises the size and representativeness 
of this study, it is possible that this approach may not 
fully capture the association between lesion and cogni-
tive profiles. For example, more extensive neuropsycho-
logical batteries could be used to tease apart more 
fine-grained relationships (Gell et  al., 2024; Salvalaggio 
et al., 2020). This study also used data from three OCS 
language versions (Dutch, Italian, and English) which 
each has small differences in test materials and scoring 
procedures (e.g., age/education specific scoring). The 
analyses presented in Supplementary Materials S2 indi-
cate that these test version differences have not signifi-
cantly impacted the conclusions of this study.

In addition, in vivo tractography could be used to cap-
ture key sources of variability in disconnectivity which may 
account for a significant portion of the variance in cognitive 
profiles (Lim & Alexander, 2009; Rost et al., 2022). Addition-
ally, the Fazekas ratings on the clinical CT scans are likely 
underestimating the importance of white matter integrity. 
While previous work has validated the Fazekas scale for 
use in CT (Rudilosso et al., 2017) and provided evidence 
that MR and CT imaging produce comparable results in 
lesion mapping analyses (Moore, Jenkinson et al., 2023), it 
is possible that the combination of MR and CT used in this 
study may have induced some variability into the neural 
results due to differences in sensitivity to lesion damage. 
However, past research has suggested that the benefits of 
combining MR and CT imaging in lesion mapping analyses 
generally outweigh this potential added noise (de Haan & 
Karnath, 2018; Moore, Jenkinson et al., 2023). This study 
used routine neuroimaging data collected within <31 days 
of stroke. Past studies have demonstrated that these data 
are of sufficient quality to detect established brain–
behaviour relationships (Moore & Demeyere, 2022; Moore 
et al., 2024), but neuroimaging data collected in the early 
time window post-stroke (e.g., <1 day) may have compar-
atively low sensitivity to lesion damage (Lansberg et  al., 
2000; Mohr et al., 1995). Additionally, this study includes 
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only scans demonstrating clearly visible lesion boundaries 
as determined by expert raters. This means that the high 
false negative rate associated with acute CT stroke imag-
ing likely increased the proportion of patients excluded but 
does not necessarily reduce the utility of scans depicting 
clear lesion boundaries.

Importantly also, individual tests may not directly map 
onto a single cognitive function, in spite of their main 
source of variance mapping onto specific cognitive 
domains (Iosa et al., 2022; Moore et al., 2024). For exam-
ple, individual OCS test scores may measure several 
(potentially dissociable) cognitive functions concurrently 
(Demeyere et  al., 2015). Latent class models cannot  
distinguish between this case and true comorbidities, 
meaning that they can overestimate the number of sub-
populations (Lubke & Muthén, 2005). This may lead to an 
overestimation of the number of true classes. Factor mix-
ture models are theoretically the most plausible model to 
explain PSCI variances/covariances. Factor mixture 
models assume that there are dimensions (cognitive 
functions) underlying test performance, but that there are 
also distinct subpopulations (Lubke & Muthén, 2005). 
However, factor mixture models can only be used when 
data are available from several subtests loading onto the 
same cognitive function. This requirement is typically not 
met for large stroke datasets, meaning that more exten-
sive behavioural data are needed before factor mixture 
modelling can be used to explore PSCI. Moreover, future 
studies must investigate the replicability of the PSCI pro-
files and investigate whether the PSCI profiles predict 
differential recovery (Demeyere & Moore, 2024).

Neuroimaging and neuroimaging-derived metrics 
were only available for a subset of the patients included 
in this study, and some behavioural classes (Classes 1, 2, 
5, 7, and 11) had insufficient lesion data to facilitate sta-
tistical brain–behaviour inferences. While the identified 
clusters were largely consistent between the full sample 
and the subsample with available neuroimaging (Supple-
mentary Materials S3), some profiles were less consistent 
due to the small number of patients with lesion maps 
(Class 5 and Class 11 in the 13-class model) and could, 
therefore, not be included in the VLSM and network anal-
ysis. Future work with access to larger imaging samples 
is needed to clarify the neural correlates of these classes. 
Notably, even though lesion data were not available for all 
patients, the subsample included in these analyses is 
substantially larger than previous similar studies. For 
example, Filler et  al. (2024) reported average sample 
sizes of 397 and 218 for studies investigating the relation-
ship between PSCI and white matter hyperintensities and 
atrophy, respectively. Previous work has shown that 
lesion mapping analyses (both univariate and multivari-
ate) are prone to some degree of results mislocalisation 

(Ivanova et al., 2021; Mah et al., 2014). For this reason, 
this study does not aim to draw causal associations 
between brain–behaviour relationships but instead aims 
to provide a qualitative description of the lesion profiles 
associated with each identified behavioural profile. Future 
studies can also aim to explore the extent to which spe-
cific neuroimaging analysis parameters (e.g., normalisa-
tion algorithm, normalisation template) may influence the 
results of lesion mapping analyses.

Overall, the results of this study reveal that PSCI is 
heterogeneous, encompassing both domain-specific 
profiles linked to focal lesions sites and profiles that  
are more strongly associated with premorbid health  
and demographic factors. Focusing merely on low-
dimensional solutions of PSCI may reveal the strongest 
factors, but more complex solutions may help capture 
critical cognitive profiles which more accurately cap-
ture the variability present in real-world clinical popula-
tions. Future clinical studies can aim to build on this 
work by exploring whether cognitive profiles can be 
used to inform clinical care by evaluating associations 
with both cognitive, physical, and quality of life recov-
ery outcomes.
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