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ABSTRACT

Theoretical neuropsychology has traditionally investigated brain—behaviour relationships by measuring the extent to
which individual cognitive impairments map onto distinct lesion correlates. However, individual post-stroke cognitive
impairments (PSCI) rarely occur in isolation. In the current study, we employ multivariate analysis techniques to
explore the extent to which individual, multi-domain patterns of PSCI can be distinguished into distinct cognitive
profiles and the extent to which these profiles are associated with lesion anatomy. Latent Class Analysis (LCA) was
conducted on domain-specific cognitive screening data from a representative stroke cohort (n = 2172). Voxel-level
and network-level lesion mapping was used to identify lesion correlates of identified PSCI profiles. In addition, the
association of the PSCI profiles with general brain health (e.g., atrophy severity, white matter integrity), and demo-
graphic characteristics was investigated. LCA identified two viable cognitive class solutions: a 5-class model and a
13-class model. The 5-class solution distinguished classical lateralised stroke deficits (e.g., aphasia, neglect) along-
side a minimal impairment and non-lateralised global impairment profile. In contrast, the 13-class solution provided
finer-grained differentiation, particularly for non-lateralised cognitive profiles which were more strongly associated
with premorbid health and education level. Importantly, lesion anatomy alone could not fully account for class distinc-
tions. While lesion location was predictive, particularly, in hyper-acute stages, profiles for patients tested 2 weeks
post-stroke revealed less influence of lesion location and more of lesion volume. These findings provide a novel,
multivariate conception of PSCI, which establishes the theoretical groundwork necessary to support future transla-
tional research aimed at improving clinical care and predicting cognitive trajectories.

Keywords: post-stroke cognitive impairment (PSCI), cognitive profiles, latent class analysis (LCA), lesion-symptom
mapping, multivariate similarity analysis

1. INTRODUCTION skills equally, but instead manifests as a diverse range of

Cognitive impairment is a common consequence of domain-specific cognitive impairments which may selec-

stroke which is associated with poor recovery and out- tively impact a wide range of cognitive functions includ-
comes in daily life (Stolwyk et al., 2021). Post-stroke cog-  Ing language, memory, and attention (Demeyere et al.,
nitive impairment (PSCI) does not impact all cognitive 2016). While theoretical neuropsychology has traditionally
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investigated brain—behaviour relationships by measuring
the extent to which individual cognitive impairments map
onto distinct lesion correlates, the clinical reality is that
individual PSCI deficits rarely occur in isolation. Indeed,
PSCI typically involves co-occurring impairments across
multiple cognitive domains (Bickerton et al., 2015;
Demeyere et al., 2015; Nys et al., 2007; Tatemichi et al.,
1994). Past research has demonstrated that patterns of
cognitive associations (and dissociations) vary widely
across individuals, but the extent to which this behavioural
variability may be captured by a reduced set of underly-
ing factors is not yet clear (Contador et al., 2023; Hobden
et al., 2023; Stebbins et al., 2008). This question is both
theoretically and clinically relevant, as exploring the fac-
tors underlying individual variability in PSCI can provide
novel insight into complex brain-behaviour relationships
while also establishing a novel, multi-domain cognitive
framework which can be applied to better understand the
cognitive needs of stroke patients.

Past research employing Principal Component Analy-
sis (PCA) has suggested that individual variability in multi-
domain PSCI can be at least partially explained by a
reduced set of underlying behavioural factors (i.e.,
“dimensions”). Corbetta et al. (2015) evaluated language,
motor, memory, and attention in first-time stroke survi-
vors (n = 67) to identify factors explaining behavioural
correlations across subjects. This study identified 3 fac-
tors (1 lateralised to each hemisphere and a non-
lateralised factor) accounting for 69% of behavioural
variance (Corbetta et al., 2015). Similarly, Bisogno et al.
(2021) found that approximately 50% of variance on the
Oxford Cognitive Screen (OCS), a domain-specific cogni-
tive screen for stroke patients, could be accounted for by
3 factors. The first factor captured language, calculation,
praxis, right-lateralised spatial neglect, and memory. The
second factor loaded on left motor and visuospatial defi-
cits, and the third factor loaded on right motor impair-
ment (Bisogno et al.,, 2021). However, a more recent
larger-scale (n = 1973) PCA found that OCS performance
was best captured by a six-factor solution (language/
arithmetic, memory, visuomotor ability, orientation, spa-
tial exploration, and executive functions) (losa et al.,
2022). Overall, past research has suggested that the vari-
ability in PSCI may be captured by a reduced number of
dimensions, but the number and underlying nature of
these dimensions have not been reliably established.

While PCA has been useful in describing patterns of
PSCI associations, this approach may underestimate the
complexity of PSCI (Sperber et al., 2022). Sperber et al.
(2022) demonstrated that the systematic spatial variabil-
ity of stroke lesion anatomy alone is sufficient to result in
an apparent low-dimensional structure underlying PSCI,
even when all simulated impairments were independent.

Consequently, Sperber et al. (2022) called for future stud-
ies to develop and compare latent structures of varying
complexity, suggesting that additional factors which do
not increase explained variance but produce an intuitively
interpretable solution should be retained in solutions.
Latent Class Analysis (LCA) is an analytical approach that
can address this research gap. While PCA aims to explain
covariance using a restricted set of continuous dimen-
sions that represent shared cognitive mechanisms (e.g.,
a visual dimension explaining praxis and picture naming
performance), LCA explains the covariances through dis-
tinct subpopulations which differ qualitatively (Lubke &
Muthén, 2005). An LCA model can identify stroke sub-
populations characterised by specific comorbidities
which arise from co-occurring damage to independent
cognitive functions. LCA enables the identification of
such “subpopulations”, for which PCA is not ideal
(Sperber et al., 2022). However, LCA also has some lim-
itations. For example, if tests are correlated due to over-
lap in what they measure, LCA models may overestimate
the number of subpopulations (Lubke & Muthén, 2005).
LCA (and PCA) both explain covariance based on a sin-
gle source, and it is likely that a combination of shared
cause and independent co-occurrence explains PSCI
profiles. However, in cases where the extensive
behavioural data (e.g., data from several tests per func-
tion of interest) needed to support joint modelling of both
sources of covariance (i.e., factor mixture models; Lubke
& Muthén, 2005) are not available, LCA still provides a
powerful method for identifying distinct profiles of PSCI
impairment (Porcu & Giambona, 2017).

It is also important to consider that profiles of lesion-
induced disconnection, in addition to lesion location,
may help explain patterns of PSCI associations. Past
work has demonstrated that individual PSCI domain
impairments can be mapped onto distinct patterns of
network-level disconnection (Bowren et al., 2022; Moore
et al., 2024), but the extent to which these disconnection
patterns may help account for common PSCI profiles
remains unclear.

However, it is important to recognise that lesion anat-
omy alone is unlikely to fully account for the variability in
PSCI. This is because the relationship between impair-
ments and lesion anatomy is often confounded by pre-
existing neurovascular changes (Rost et al.,, 2022).
Premorbid factors including cerebral atrophy (Casolla
et al., 2019; Stebbins et al., 2008), white matter integrity
(Dacosta-Aguayo et al., 2014; de Kort et al., 2023), and
education level (Contador et al., 2023; Umarova et al.,
2019) are each associated with an increased risk of PSCI.
There is also high comorbidity between stroke and major
neurocognitive disorders and mild cognitive decline (Bunn
et al.,, 2014). These brain health markers are typically
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associated with impairment in memory, executive func-
tions, processing speed, and language (de Kort et al.,
2023; Demeyere et al., 2021; Yanhong et al., 2013), which
can occur alongside stroke-related cognitive impairments.
The latter complicates the clinical picture of PSCI.

Although many studies have documented the impor-
tance of these factors for PSCI, there is a lack of studies
investigating across-domain PSCI profiles and how such
profiles link to lesion anatomy and premorbid brain health.
That is, prior studies using data-driven strategies to inves-
tigate the structure of PSCI have either focused on sepa-
rate cognitive domains (Bonkhoff et al., 2021; Landrigan
et al., 2021; Weaver et al., 2023), a global cognition out-
come (Buvarp et al., 2021; Keins et al., 2021; Ma et al.,
2024; Weaver et al., 2021), or have focused on a select
group of stroke patients (such as first-ever stroke patients
with good premorbid brain health) (Buvarp et al., 2021;
Corbetta et al., 2015; Keins et al., 2021; Ma et al., 2024).
Given the high comorbidities in the clinical reality of
stroke, it is important to disentangle distinct cognitive
profiles and investigate to what extent such profiles align
with specific lesion topographies versus pre-existing neu-
rovascular changes, especially in a clinical stroke sample.

The present study seeks to address this gap by using
latent class analysis to investigate cognitive profiles in a
large stroke cohort assessed with the Oxford Cognitive
Screen (OCS). This approach allows to explore the struc-
ture of PSCI in a clinically representative stroke sample
beyond the limitations of global cognitive screens
(Demeyere et al., 2016). Specifically, our objectives were
to (1) distinguish cognitive profiles after stroke, (2) assess
and compare the interpretability of these profiles, and (3)
evaluate the extent to which stroke lesion anatomy, pre-
morbid brain health, and demographic variables influ-
ence the structure of PSCI.

2. MATERIALS AND METHODS

Data of 2172 stroke patients were aggregated from Bel-
gian, ltalian, and UK databases (Demeyere et al., 2015,
2016, 2019; Huygelier et al., 2022; Mancuso et al., 2018).
These studies included all patients who were able to con-
centrate for 15-20 minutes (Supplementary Materials S1).

2.1. Ethics statement

All patients provided informed consent and all proce-
dures followed the Helsinki declaration.

2.2. Cognitive screening

Domain-specific impairments were assessed with three
language versions of the Oxford Cognitive Screen (i.e.,

OCS, OCS-IT, OCS-NL) (Demeyere et al., 2015, 2016;
Huygelier et al., 2020, 2022; Mancuso et al., 2016, 2018).
These OCS translations have each been validated in stroke
patients (Demeyere et al., 2015; Huygelier et al., 2022;
Mancuso et al., 2018). The OCS is designed to be inclusive
for patients with common stroke-related impairments
including aphasia, spatial neglect, primary visual, and
motor impairments (Demeyere et al., 2015, 2016). The OCS
consists of 10 subtasks indexing: language (picture nam-
ing, semantics, sentence reading), memory (orientation,
verbal, and episodic memory), numerical cognition (writing
numbers, calculation), praxis (imitating meaningless ges-
tures), and executive function (trail making)/attention (can-
cellation test). Detailed descriptions of OCS subtests are
reported elsewhere (Demeyere et al., 2015, 2016). All
impairment classifications were made based on clinical
thresholds which were age corrected for the OCS-NL
(Huygelier et al., 2020) and OCS-IT (Mancuso et al., 2016).

2.3. Neuroimaging data

All patients with lesion masks and behavioural data col-
lected within 45 days of stroke onset were included in
neuroimaging analyses (n = 515). Lesion maps were
derived from acute (<31 days post-stroke) clinical neuro-
imaging (442 CT, 4 T1, 62 T2, 6 FLAIR) which were col-
lected in the UK OCS screening programmes (Demeyere
et al., 2015, 2016). Previous research has demonstrated
that neuroimaging collected within 31 days of stroke is
able to support accurate lesion mapping analyses, even
though the full extent of lesion damage may not yet be
fully visible at very early (e.g., <1 day) imaging time points
(Lansberg et al., 2000; Mohr et al., 1995; Moore et al.,
2024). Previous studies have found that CT and MR yield
comparable lesion mapping results and that both imag-
ing modalities can be used to accurately identify estab-
lished PSCI correlates (de Haan & Karnath, 2018; Moore,
Demeyere et al., 2024; Moore, Jenkinson et al., 2023).
Notably, a recent, large-scale simulation study (using a
subset of the data reported here) compared the accuracy
of lesion mapping analyses using CT- and MR-derived
lesion masks. This study found that overall accuracy was
low for both CT- and MR-derived analyses, but analyses
using CT data were significantly more accurate in terms
of target hits (e.g., detecting the critical voxel/area) and in
terms of displacement from the target area/voxel relative
to MR-based analyses (Moore, Jenkinson et al., 2023). In
addition to this previous lesion mapping, guidelines and
manuals explicitly encourage combining different imag-
ing modalities (CT and MR) to maximise the degree of
overlap (i.e., statistical power) in lesion mapping (de Haan
& Karnath, 2018). Patients with clear evidence of multi-
ple, temporally distinct lesions were excluded.
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Lesions were manually delineated by trained experts
on axial slices using MRIcron. Native-space lesion masks
were smoothed at 5 mm full-width at half-maximum in
the z-direction, binarised (0.5 threshold), reoriented,
warped into 1 x 1 x 1 mm stereotaxic space using Statis-
tical Parametric Mapping (Ashburner et al., 2016) and
Clinical Toolbox (Rorden et al., 2012) functions. This nor-
malisation approach uses combined linear and affine
transformations coupled with nonlinear warping to Clini-
cal Toolbox templates (Ashburner et al.,, 2016; Rorden
et al., 2012) (scripts available at https://osf.io/mv2qf/files
/osfstorage). All resulting normalised scan and lesion files
were visually inspected for quality. This normalisation
procedure employs age-specific CT or MR templates
(Rorden et al., 2012). Exploratory analyses were con-
ducted to ensure behavioural results were consistent
between the total sample and subset of patients with
lesion data (Supplementary Materials, Supplementary
Figs. S3.1 and S3.2).

To estimate the degree of disconnection within func-
tional networks caused by structural lesion damage,
lesion masks were used to estimate the degree of dis-
connection between different cortical (and subcortical)
areas caused by lesion damage. This approach is stan-
dard in cases where in vivo tractography data are not
available, and are described in detail elsewhere (Griffis
et al., 2021). Parcel-wise dysconnectivity statistics were
generated to summarise the degree of disconnection
across all cortical areas defined by the Schaefer-Yeo
Atlas (100 parcels) (Yeh et al., 2018) and subcortical/cer-
ebellar areas in the AAL (Tzourio-Mazoyer et al., 2002)
and Harvard-Oxford atlases (35 parcels). The atlases
define seven networks: Control, Default, Dorsal Attention,
Limbic, Somatic Motor, Ventral Attention, and Visual net-
works as well as networks connecting subcortical/cere-
bellar structures (Schaefer et al., 2018). In cases where
lesions intersect with a streamline (i.e., a connection
between two parcels), the relevant streamline is consid-
ered to be disconnected (Griffis et al., 2021). Network
nodes correspond to each defined cortical areas, and
network edges summarise the connections (streamlines)
between each pair of nodes (Griffis et al., 2021). Network-
level disconnectivity was calculated as the proportion of
streamlines which terminate (end or begin) in each pair of
parcels that were disconnected (Griffis et al., 2021). Tract-
level structural disconnection was quantified by calculat-
ing the percent of streamlines within each of the
HCP-842’s 70 white matter tracts which were discon-
nected by lesions.

Atrophy was assessed using the Global Cortical Atro-
phy (GCA) scale (Pasquier et al., 1996). The atrophy in 13
brain regions was assigned a score of 0 (none), 1 (mild), 2
(moderate), or 3 (severe). Where regions were obscured

by stroke lesions, regions were assigned the score of the
homologous region within the undamaged hemisphere.
The severity of white matter lesions was determined
using the Fazekas scale (Fazekas et al., 2002). Deep
white matter lesions were rated as 0 (absent), 1 (punctu-
ate foci), 2 (beginning confluence of foci), or 3 (large con-
fluent areas). Periventricular white matter lesions were
rated as 0 (absent), 1 (symmetrical caps), 2 (smooth halo),
or 3 (irregular hypoattenuations extending into deep
white matter). Total GCA and Fazekas scores (n = 475)
were calculated by adding all region scores (GCA
range = 0-39, Fazekas range = 0-6). Both scales have
been validated for use in CT (Hobden et al., 2024) and
MR stroke imaging (Fazekas et al., 2002; Pasquier et al.,
1996). Given that Fazekas and GCA scores are derived
from imaging, these measures were only available for
patients with neuroimaging data.

2.4. Statistical analyses

Data analysis was performed using R 4.0.2, python 3.9,
and MATLAB R2022b. The specific packages employed
in each analysis are reported in Supplementary Materials
S2 and S3.

2.4.1. Identifying distinct PSCI profiles

Latent class analysis (LCA) was used to identify common
profiles of PSCI in a data-driven fashion. LCA assumes
that the associations of the observed data arise from
unobserved subgroups (i.e., classes) in the population.
LCA is more powerful than k-means or hierarchical clus-
tering (Cleland et al., 2000; Porcu & Giambona, 2017), as
it enables comparisons of models of different numbers of
classes (Nylund-Gibson & Choi, 2018) and because it
allows for class membership uncertainty (estimating the
probability that an individual belongs to each identified
class).

To establish the classes, only the binary impairment
classifications on OCS subtests were included as
observed variables (Bakk & Kuha, 2021). The LCA mod-
els used 10 repetitions (maximum of 50,000 iterations
each) with different random starting values. The models
were estimated including all partially available cases
(Enders & Bandalos, 2001; Linzer & Lewis, 2011). To
determine the ideal number of classes, models with n
and n + 1 classes were compared with the Bayesian
Information Criterion (BIC), Akaike Information Criterion
(AIC), and the adjusted Lo—Mendell-Rubin likelihood ratio
test (Lo et al.,, 2001; Nylund-Gibson & Choi, 2018;
Petersen et al., 2019; Tein et al., 2013). A difference in the
BIC and AIC larger than 2 is considered substantial evi-
dence in favour of the more complex model (Burnham &
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Anderson, 2004). To investigate class distinguishability,
the relative entropy (ranging from 0 = no separationto 1 =
perfect separation) was calculated (Celeux & Soromenho,
1996).

2.4.2. Interpretation of PSCI profiles

To interpret LCA classes, the cognitive profiles of patients
in each behavioural class were summarised. Class mem-
bers were always compared with non-members to iden-
tify unique characteristics of each class. Specifically,
each class’s probability of impairment and 95% confi-
dence interval for each subtest were compared with that
of patients belonging to other classes. Each class was
assigned a summary label providing a qualitative descrip-
tion of the most prevalent impairment types within each
class. This label is used to aid referencing and interpreta-
tion but is not intended as a formal definition.

Neuroanatomical characteristics were compared
between class members and non-members. First, we
estimated differences in proportions of left- and right-
hemispheric patients. Second, the ratio of lesion volume
between class members and non-members was esti-
mated. Third, differences in GCA and Fazekas scores
were estimated. In addition, differences in proportions of
class members versus non-members in different age
groups (<60: 22% of patients, 61-80: 50% of patients,
and >80: 28% of patients), education levels (<7: 17% of
patients, 7-12: 54% of patients, and >12 years of school-
ing: 29% of patients), stroke chronicity groups (<3 weeks:
73% of patients, >3 weeks post-stroke: 27% of patients),
and sex were estimated. Model fits were satisfactory and
all modelling details are reported in Supplementary Mate-
rials S2.

Mass-univariate voxel-based lesion analyses (VLSM)
were conducted to evaluate whether classes were char-
acterised by distinct lesion profiles. Each of these analy-
ses included lesion volume as a covariate of no interest
and employed permutation-based thresholds (2000 per-
mutations) to correct for multiple comparisons
(alpha = .05) (de Haan & Karnath, 2018). These analyses
were performed with NiiStat (neurolabusc, 2016) and only
considered voxels which were impacted in at least 10
patients (Supplemental Materials S2). Resultant signifi-
cant voxels clusters (>10 contiguous voxels) were com-
pared with anatomical atlases.

We also contrasted network disconnections of class
members versus non-members, using a test that assumes
that edges that differ between groups are clustered into
components (i.e., a subnetwork of connected edges)
(Gracia-Tabuenca & Alcauter, 2020). This approach
increases statistical power relative to mass-univariate
statistical comparisons (Kim et al., 2014; Zalesky et al.,

2010) by controlling the family-wise error at the subcom-
ponent rather than edge level. Following the NBS proce-
dure, we first identified a set of edges which had the
strongest associations with class membership (supra-
threshold edges) (uncorrected p < .01). To evaluate the
quality of identifying our supra-threshold edges, we
checked the differences in edge weights for the supra-
and sub-threshold edges (Supplementary Materials S3).
Then, these edges are entered into a permutation-based
test (1000 permutations) that identifies statistically signif-
icant components (i.e., subnetwork of connected edges),
estimating an FWE-corrected p-value for the sum of edge
weights of the component. Then, we quantified network
disconnection. An edge was considered part of a func-
tional network if at least one node belonged to the net-
work (e.g., both inter- and intra-network connections)
(Supplementary Materials S3). The VLSM and network
analyses were only conducted for classes which con-
tained at least 15 patients with available lesion data.

2.4.3. Does lesion topography drive PSCI profiles?

Finally, we evaluated the extent to which lesion anatomy
drove the LCA solution using multivariate similarity analy-
sis. Multivariate similarity analysis is a popular neuroimag-
ing analysis technique (Kriegeskorte & Kievit, 2013), which
we applied here to determine to what extent patients who
were behaviourally similar were also similar in terms of
lesion anatomy. This analysis is an informative precursor to
analyses aiming to predict specific behavioural profiles
based on lesion data alone (or vice versa). If multivariate
similarity analysis reveals that there is a high degree of
similarity between lesion topographies within behavioural
cluster members (relative to non-members), this indicates
that it may be feasible to accurately predict profile mem-
bership based on lesion anatomy. However, if similarity
analysis finds weak or negligible relationships between
anatomy and profile membership, this indicates that lesion
anatomy alone cannot provide an informative prediction of
profile membership.

In our analysis, multivariate similarity analysis was
used to determine the degree to which similarity in terms
of profile membership (cognitive similarity) was associ-
ated with similarity in terms of lesion topography/discon-
nection (neuroanatomical similarity). To quantify cognitive
similarity, we computed the distance between the class
probabilities for each pair of participants. We also com-
puted neuro-anatomical (dis)similarity at the voxel, tract,
and network levels. Then we assessed the association
between the cognitive and the neuroanatomical dis-
tances (Fig. 1; Supplementary Materials S3).

The robustness of the similarity analysis was evalu-
ated across key patient subgroups. For example, pre-
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Behavioral Analysis: Identifying distinct PSCI profiles
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Fig. 1.

Overview of the analysis. Top left (blue) illustrates an OCS profile of a single case, the LCA model, and output we

obtain for case A from the LCA model. Bottom left (purple) illustrates preprocessing of clinical CT or MR scans. The right
side (green) illustrates the association of cognitive profiles, neuroanatomy, and demographic variables. For the multivariate
similarity analysis, a distance is computed for each pair of cases (example of three cases) and the association of cognitive

and neuroanatomical distances was then calculated.

morbid brain health decline may reduce the association
between lesion location and the cognitive profile (Rost
et al.,, 2022). In addition, haemorrhagic stroke patients
can suffer from diffuse damage meaning that the relation-
ship between cognition and lesion location could be
weaker in this subgroup (Sheppard et al., 2022). Given
that previous research has suggested that lesion location-
behaviour relationships are strongest early after stroke
onset, we also evaluated how this association depended
on time after stroke (de Haan & Karnath, 2018; Sheppard
et al., 2022). For all associations, we performed a leave-
one-case-out sensitivity analysis which indicated robust
results across subsamples.

3. RESULTS

3.1. Participants

Patients were assessed on average 19 days post-stroke
(Mdn =7, SD = 35.7). A total of 43% of patients had a
left-hemispheric stroke, 50% had a right-hemispheric
stroke, and 7% had a bilateral stroke. Most patients had
an ischaemic stroke (81% ischaemic, 19% haemorrhage)
and 45% were female. The average age of the patients
was 71 years (SD = 13.6). The average years of formal

education was 11 years (SD = 4). The lesion distribution
and tract disconnections of patients with a lesion map
are visualised in Figure 2. Participant demographics,
including testing times and lesion descriptions, are
reported in Table 1.

3.2. PSCI can be distinguished into 5 or 13 profiles

Two candidate models of distinct cognitive profiles were
retrieved: a 5-class model (best fitting according to the
BIC index) and a 13-class model (best fitting according to
the AIC and Likelihood Ratio Test) (Supplementary Mate-
rials S2). The relative entropy was .64, suggesting that
there is a moderate level of class separability. The proba-
bility that an individual was a member of their respective
class was on average 84 % for the 5-class model (SD = 16)
and 74% for the 13-class model (SD = 19). The probabil-
ity that an individual was a member of another class was
on average 4% for the 5-class model (SD = 7) and 2% for
the 13-class model (SD = 4). The relationship between
the two solutions is complex, with some classes mapping
better onto each other than others across the solutions
(Supplementary Fig. S2.6). To interpret the models, we
inspected the probability of impairment per OCS subtest
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z=52

Fig. 2. Lesion overlay and tract disconnections (n = 515). Number of patients with >50% disconnection in a tract. MNI
slices -8-63 are presented in neurological convention (right hemisphere presented on the right side).

Table 1. Patient characteristics by country.
UK IT BE
(n=1206) (n=684) (n=282)
Age M 72.4 711 64.8
Mdn 75 73 67
SD 13.6 12.8 14
Min-Max 18-98 24-96 21-91
Years of M 11.7 8.6 12.4
education  Mdn 11 8 12
SD 29 45 3.6
Min-Max 5-30 1-25 5-25
Sex % Female 45% 45% 39%
Days since M 8.7 37.6 22.7
stroke Mdn 4 20 15
SD 14.4 54.7 24.4
Min-Max 0-208 0-567 0-182
Stroke type % Ischaemic 84% 7% 81%
Lesion side % Left 46% 40% 38%
% Right 48% 56% 44%
% Bilateral 5% 4% 18%

for class members versus non-members and their neuro-
anatomical and demographic characteristics (Figs. 3-10;
Tables 2 and 3).

3.3. Interpretation of the five profiles

Class 1 (“Memory”, n = 469) was characterised by a
comparably higher rate of numerical cognition and
memory impairments coupled with an absence of visual
field impairment and left egocentric neglect. Class 1
members were more likely left- than right-hemispheric
stroke patients (E ,, = .54, 99% ClI [.48, .61], E;, = .40,
99% CI [.34, .47]) and had higher GCA ratings. Class 1
was associated with a single component of 233 net-
work edges which were more disconnected relative to
others. This component consisted of edges spread
across all networks. Class 1 was not associated with

any voxel clusters. Class 1 members were more likely to
be lower educated.

Class 2 (“Left Neglect”, n = 288) included primarily
right hemisphere stroke patients (g , = .11, 99% CI [.06,
.16], E,, = .81, 99% CI [.73, .87]) with left egocentric and
allocentric neglect. Class 2 members had comparably
higher rates of visual field and executive function defi-
cits. They were characterised by larger lesions and
worse premorbid brain health. VLSM analysis identified
two clusters of significant voxels associated with this
class, impacting the right lateral occipital cortex, insular
cortex, and angular gyrus (150 cm?®, MNI = [46, -4, 2])
and the right middle frontal gyrus (0.13 cm?®, MNI = [30,
14, 30]). Class 2 was associated with a network of 773
disconnections, the largest portion of which were within
the right-hemispheric visual network (18% of all visual
connections).

Class 3 (“Language”, n = 320) was characterised by
widespread impairment affecting language, numerical
cognition, memory, and praxis. Class 3 was associated
with larger lesions and left-hemisphere stroke (E,,, = .60,
99% CI [.52, .66], E,, = .35, 99% CI [.29, .43]). Lesions in
four voxel clusters in the left insula and putamen
(16.3 cm?®, MNI = [-32, 4, 8]), left precentral gyrus
(0.35 cm?®, MNI = [-46, 0, 42]), the left middle frontal gyrus
(0.24 cm?, MNI = [-40, 24, 26]), and the left white matter
(0.11 cm®, MNI = [-28, -60, 18]) were associated with
Class 3. Class 3 was associated with a single network of
429 disconnections with the left-hemispheric default
mode network most impacted (12% of all default mode
connections). Class 3 members were also less likely
younger and more likely lower educated.

Class 4 (“No or mild impairment”, n = 703) was
characterised by a low probability of impairment. Class 4
members had smaller lesions, better premorbid health,
were more likely younger, and higher educated. Class 4
members were equally likely left- or right-hemispheric
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Fig. 3. Cognitive profiles of the 5-class model. The probability of impairment per OCS subtest and its 95% confidence
interval are depicted of class members (colour) versus others (grey). Nam = OCS picture naming task, Sem = OCS
semantics tests, Read = OCS sentence reading task, Num = OCS number writing task, CAL = OCS calculation task,
ORT = OCS orientation task, VM = OCS verbal memory task, EM = OCS episodic memory task, PR = OCS praxis test,
Canc = OCS cancellation total score, Ego L = OCS left egocentric neglect, Obj L = OCS left object-level neglect, Ego

R = OCS right egocentric neglect, Obj R = OCS right object-level neglect.

stroke patients (E,, = .47, 99% CI [.42, .52], E,, = .45,
99% CI [.40, .50]).

Finally, Class 5 (“Attention”, n = 392) was character-
ised by non-lateralised cancellation task impairment
accompanied by low probabilities of impairment across all
other subtests. Class 5 members were more likely right-
hemisphere stroke patients (E,,, = .28, 99% CI [.22, .35],
E.., =.64,99% CI[.57,.71]) and less likely lower educated.

There was no significant voxel cluster or network-level
disconnection pattern associated with Class 4 or Class 5.

3.4. Interpretation of the 13 profiles

3.4.1. Left-lateralised profiles

Class 1 (“Right-sided neglect”, n = 91) was character-

on the visual field test. In addition, Class 1 members
exhibited a higher rate of sentence reading and numerical
cognition impairment. Class 1 members were more likely
left-hemispheric stroke patients (E,, = .66, 99% CI [.50,
.80], E,, = .27, 99% CI [.14, .42]) with higher GCA ratings
and a lower education level. There were insufficient lesion
maps (n = 13) to investigate the association with lesion
anatomy.

Class 6 (“Global language & memory”, n = 72) was
characterised by impairments on language (picture nam-
ing and sentence reading), verbal memory, and number
writing. Class 6 had spared performance on the visual
field test, and no left-sided egocentric neglect. Class 6
members were more likely left-hemispheric patients
(E,, =.71,99% CI [.57, .84], E,, = .24, 99% CI [.13, .38)).

ised by right egocentric neglect and spared performance A cluster of significant voxels including the left insular

8
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Class 1 (“Memory”)

Class 5 (“Attention”) %

@ Visual @Dorsalattention ®Limbic © Default mode

® Control  Ventral attention @Subcortical @ Somato-motoric
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Fig. 4. Lesion correlates of the 5-class model. Top rows depict the lesion overlay (colours represent the proportion
patients in a class with a lesion at a specific voxel). A black contour indicates a region of significant voxels. The Bottom
row: 1% strongest network-level disconnections which were part of a statistically significant component of edges. *Non-
significant strongest disconnections depicted. The colour of the edges represents the mean proportion disconnection of
class members. Neuroimaging is presented in neurological convention.
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Fig. 5. Cognitive profiles of the left-lateralised profiles of the 13-class model. The probability of impairment per OCS
subtest and its 95% confidence interval are depicted of class members (colour) versus others (grey). Nam = OCS
picture naming task, Sem = OCS semantics tests, Read = OCS sentence reading task, Num = OCS number writing task,
CAL = OCS calculation task, ORT = OCS orientation task, VM = OCS verbal memory task, EM = OCS episodic memory
task, PR = OCS praxis test, Canc = OCS cancellation total score, Ego L = OCS left egocentric neglect, Obj L = OCS left
object-level neglect, Ego R = OCS right egocentric neglect, Obj R = OCS right object-level neglect.

cortex, putamen, and inferior frontal gyrus (pars opercu-
laris) (volume = 28.8 cm?, peak z-score at MNI = [-30, 6,
12]), and a second cluster impacting the left insular cor-
tex and left central opercular cortex (0.30 cm?®, MNI = [-30,
-20, 26]) was associated with Class 6. Class 6 was char-
acterised by a component of 360 disconnections encom-

10

passing several networks, among which the left default
mode network was most disconnected (12%).

Class 12 (“Expressive language”, n = 198) was char-
acterised by a low probability of impairment across all
tasks, except for sentence reading, number writing, and
picture naming, with mostly intact memory performance
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Fig. 6. Lesion correlates of the left-lateralised profiles of the 13-class model. Top rows depict the lesion overlay (colours
represent the proportion patients in a class with a lesion at a specific voxel). A black contour indicates a region of
significant voxels. The Bottom row: 1% strongest network-level disconnections which were part of a statistically significant
component of edges. *Non-significant strongest disconnections depicted. The colour of the edges represents the mean
proportion disconnection of class members. Neuroimaging is presented in neurological convention.

compared with class 6. Class 12 membership was asso-
ciated with left-hemispheric stroke (E , = .62, 99% ClI
[.51,.72], E,,, = .33, 99% CI [.23, .43]) and two voxel clus-
ters, one centred in the left Heschl’'s Gyrus (0.19 cmd,
MNI = [-42, -20, 8]) and the second within the left planum
polare (0.18 cm?, MNI = [-44, -10, -6]). Class 12 was char-
acterised by a single component of 186 disconnections,
with the left-hemispheric default mode network being the
most impacted (7%). Class 12 patients were more likely
part of the middle education level than others.

Class 13 (“Severe language & neglect”, n = 107)
was characterised by high probabilities of impairment
across language, numerical cognition, memory, praxis,
visual field impairments, and right-sided neglect. Class

11

13 included mainly left-hemispheric stroke patients
(E,, = .69, 99% CI [.58, .80], E,,, = .26, 99% CI [.16, .37])
with higher GCA ratings. Class 13 was associated with 7
left-hemispheric  voxel clusters: precentral gyrus
(0.55 cm?, MNI = [-34, 2, 22)), inferior frontal gyrus (pars
triangularis) (0.34 cm?, MNI [-58, 30, 1Q]), insula
(0.14 cm®, MNI = [-36, 6, -4]), hippocampus (0.12 cm?,
MNI = [-36, -22, -12]), inferior frontal gyrus (pars opercu-
laris) (0.10 cm?®, MNI = [-58, 20, 24]), and two clusters in
the white matter (0.96 cm?, MNI = [-40, -40, 2]; 0.88 cm?,
MNI = [-40, -36, -6]). Class 13 was characterised by a
component of 266 disconnections across many net-
works, among which the left dorsal attention network
was most disconnected (8%).
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Fig. 7. Cognitive profiles of the right-lateralised profiles of the 13-class model. The probability of impairment per

OCS subtest and its 95% confidence interval are depicted of class members (colour) versus others (grey). Nam = OCS
picture naming task, Sem = OCS semantics tests, Read = OCS sentence reading task, Num = OCS number writing task,
CAL = OCS calculation task, ORT = OCS orientation task, VM = OCS verbal memory task, EM = OCS episodic memory
task, PR = OCS praxis test, Canc = OCS cancellation total score, Ego L = OCS left egocentric neglect, Obj L = OCS left
object-level neglect, Ego R = OCS right egocentric neglect, Obj R = OCS right object-level neglect.

3.4.2. Right-lateralised profiles

Class 3 (“Severe left-sided visuospatial impairment”,
n = 69) mainly included right-hemispheric stroke patients
(E,, =-19,99% CI [.08, .33], E,,, = .78, 99% CI [.62, .90])
who had impairments on tests involving a visual compo-
nent. Class 3 was associated with larger lesions, and 9

significant voxel clusters mainly impacting the right visual
cortex. The largest of these voxel clusters (70.14 cm? vol-
ume) impacted the lateral occipital cortex (inferior divi-
sion), middle temporal gyrus (posterior division), and the
intracalcarine cortex (MNI = [24, -80, 6]). The remaining
voxel clusters were centred in the right middle frontal/

12
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Fig. 8. Lesion correlates of the right-lateralised profiles of the 13-class model. Top rows depict the lesion overlay
(colours represent the proportion patients in a class with a lesion at a specific voxel). A black contour indicates a region of
significant voxels. The bottom row: 1% strongest network-level disconnections which were part of a statistically significant
component of edges. *Non-significant strongest disconnections depicted. The colour of the edges represents the mean
proportion disconnection of class members. Neuroimaging is presented in neurological convention.

precentral gyri (0.86 cm?, MNI = [32, -6, 26]), amygdala
(0.32 cm?, MNI = [20, -6, -10]), precentral gyrus (0.29 cm?,
MNI [56, 4, 32], supramarginal gyrus (0.29 cm3,
MNI = [66, -36, 30]), inferior frontal gyrus pars opercularis
(0.27 cm?®, MNI = [60, 16, 6]), insular cortex (0.15 cm?,
MNI = [32, -2, 14]), hippocampus (0.14 cm?, MNI = [30,
-18, -16]), and putamen (0.13 cm?, MNI = [26, -4, 10]).
Class 3 was associated with a component of 360
network-level disconnections with the right visual net-
work being the most impacted (18%).

Class 8 (“Severe left-sided neglect”, n = 147) was
characterised by left egocentric and allocentric neglect,
coupled with lower probabilities of impairment on picture
naming and verbal recall tasks. Class 8 patients primarily
had right hemisphere lesions (E,, = .12, 99% CI [.06, .21],
E, = .77, 99% CI [.67, .86]) and worse premorbid brain

13

health. Class 8 was associated with a significant cluster
of voxels in the right insular cortex and superior temporal
gyrus (0.62 cm?3, MNI = [48, -10, 0]). Class 8 was associ-
ated with a component of 476 disconnections among
which the right visual network was most disconnected
(12%).

Class 9 (“Attention”, n = 210) was characterised by
non-lateralised impairment on the cancellation test co-
occurring with low impairment rates across other tests.
The majority of patients had a right-hemispheric stroke
(E,, = -33,99% CI [.24, .43], E,,, = .60, 99% CI [.49, .69])
and Class 9 members were less likely lower educated.
Class 9 was not significantly associated with any voxels
nor network-level disconnections.

Class 10 (“Left-sided egocentric neglect”, n = 151)
was characterised by left-sided egocentric neglect
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Fig. 9. Cognitive profiles of the non-lateralised profiles of the 13-class model. The probability of impairment per OCS
subtest and its 95% confidence interval are depicted of class members (colour) versus others (grey). Nam = OCS
picture naming task, Sem = OCS semantics tests, Read = OCS sentence reading task, Num = OCS number writing task,
CAL = OCS calculation task, ORT = OCS orientation task, VM = OCS verbal memory task, EM = OCS episodic memory
task, PR = OCS praxis test, Canc = OCS cancellation total score, Ego L = OCS left egocentric neglect, Obj L = OCS left
object-level neglect, Ego R = OCS right egocentric neglect, Obj R = OCS right object-level neglect.

coupled with low impairment rates on other tasks mostly
due to right-hemispheric stroke (E , = .13, 99% ClI [.07,
.22], E,,, = .80, 99% CI [.70, .88]). Class 10 was associ-
ated with significant voxel clusters in the right putamen,
thalamus and white matter (3.88 cm?, MNI = [22, -18, 18]),
right precentral gyrus (0.08 cm?3, MNI = [44, -10, 32]), and
postcentral gyrus (0.08 cm?, MNI = [44, -16, 32]). Class
10 members had a subnetwork of 493 disconnections
among which the ventral attention network in the right
hemisphere was most disconnected (11%).

3.4.3. Non-lateralised profiles

Finally, there were five non-lateralised profiles (Fig. 6)
which were not significantly associated with lesion side,
location, and network disconnections.

Class 2 (“Potential Premorbid cognitive impair-
ment”, n = 199) was characterised by moderate impair-
ment probabilities on memory tasks or the cancellation
task. Notably, Class 2 members had worse premorbid

brain health. Class 2 was not included in VLSM, as there
was insufficient lesion overlap.

Class 4 (“No or mild impairment”, n = 656) was
characterised by a low probability of impairment across
all subtests. Class 4 members had significantly smaller
lesions, better premorbid brain health, more likely to be
younger, and higher educated.

Class 5 (“Mild right-sided neglect”, n = 23) was
characterised by right-sided egocentric neglect. How-
ever, Class 5 consisted of few patients and, therefore,
had a high uncertainty regarding the impairment proba-
bilities and associated covariates.

Class 7 (“Low cognitive reserve”, n = 156) was char-
acterised by higher probabilities of impairment within the
numerical and memory domains. Class 7 patients had
higher GCA ratings and were more likely lower educated.
There was insufficient lesion overlap to examine the rela-
tionship with lesion location.

Class 11 (“Executive impairment”, n = 93) was char-
acterised by executive function impairment which

14
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Fig. 10. Lesion correlates of the non-lateralised profiles of the 13-class model. Top rows depict the lesion overlay
(colours represent the proportion patients in a class with a lesion at a specific voxel). A black contour indicates a region of
significant voxels. The Bottom row: non-significant strongest disconnections depicted. The colour of the edges represents
the mean proportion disconnection of class members. Neuroimaging is presented in neurological convention.

occurred in the absence of neglect and visual field impair- 3.5. Lesion neuroanatomy does not fully explain
ments. Class 11 patients had higher GCA ratings, were PSCI profiles

less likely acute stroke patients, and more likely lower edu- | 55t e evaluated the extent to which the cognitive
cated. There were not enough lesion maps (n = 9) available  profiles as identified by the LCA model were driven
to assess Class 11’s relationship with lesion location. by lesion neuroanatomy (Fig. 1). First, cognitive and

15
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Table 2. Characteristics of the 5-class solution.

Class 1 Class 2 Class 3 Class 4 Class 5
Lesion Side (Proportion) L 0.18, -0.36, 0.24, 0.09, -0.15,
[0.10, 0.25] [-0.42, -0.29] [0.15, 0.33] [0.03, 0.15] [-0.23, -0.07]
R -0.16, 0.35, -0.22, -0.10, 0.14,
[-0.24, -0.08] [0.27, 0.41] [-0.30, -0.13] [-0.16, -0.03] [0.05, 0.22]
B -0.02, 0.02, -0.03, 0.01, 0.01,
[-0.05, 0.02] [-0.03, 0.08] [-0.06, 0.02] [-0.02, 0.05] [-0.03, 0.06]
Lesion Volume 0.72, 3.57, 2.11, 0.4, 1,
[0.35, 1.43] [1.49, 7.69] [1.05, 4.87] [0.22, 0.74] [0.44, 2.08]
Stroke Time (Acute) 0, 0, -0.05, 0.03, 0.02,
[-0.06, 0.07] [-0.09, 0.07] [-0.13, 0.03] [-0.03, 0.08] [-0.05, 0.09]
GCA 0.16, 0.28, 0.02, -0.25, -0.02,
[0.09, 0.22] [0.19, 0.36] [-0.08, 0.12] [-0.30, -0.19] [-0.09, 0.04]
Fazekas 0.03, 0.38, -0.01, -0.25, 0.05,
[-0.17,0.2] [0.17, 0.58] [-0.27, 0.26] [-0.42, -0.11] [-0.14, 0.25]
Age 18-60 -0.06, -0.01, -0.07, 0.12, 0.02,
[-0.11, Q] [-0.08, 0.06] [-0.12, -0.01] [0.07, 0.17] [-0.04, 0.08]
61-80 -0.01, 0, -0.07, 0.06, 0.03,
[-0.08, 0.06] [-0.08, 0.08] [-0.15, 0.02] [0,0.12] [-0.05, 0.1]
>80 0.07, 0.01, 0.14, -0.17, -0.04,
[0, 0.14] [-0.07, 0.1] [0.05, 0.21] [-0.22, -0.12] [-0.11, 0.03]
Education <7 0.12, -0.01, 0.19, -0.16, -0.13,
[0.05, 0.19] [-0.09, 0.08] [0.11, 0.28] [-0.21, -0.12] [-0.18, -0.07]
7-12 -0.04, 0.07, -0.12, 0.02, 0.06,
[-0.11, 0.04] [-0.03, 0.16] [-0.21, -0.03] [-0.04, 0.09] [-0.03, 0.15]
>12 -0.08, -0.06, -0.07, 0.14, 0.06,
[-0.14, -0.02] [-0.13, 0.03] [-0.14, 0.01] [0.08, 0.2] [-0.01, 0.15]
Sex (Proportion Male) -0.05, 0.02, -0.08, 0.05, 0.05,
[-0.12, 0.02] [-0.07, 0.11] [-0.17, -0.01] [0, 0.11] [-0.02, 0.13]

Note. Significant contrasts at the .01 level indicated in bold. L = left, R = right, B = bilateral.
Estimated median difference of class members versus others and 99% credible intervals. Estimates for categorical variables reflect the
difference in proportions between class members and others. Estimates for non-categorical variables reflect the difference in the value
between class members and others. For lesion volume, the ratio between class members and others is reported.

neuroanatomical similarity was evaluated for all patients
with a lesion map. Within this group, all lesion metrics
were significantly positively associated with cognitive
similarity (Fig. 11). Associations of network-level discon-
nectivity (r(514") = .16, 95% CI [.15, .17]) and lesion vol-
ume (r(514) =.15,95% CI [.14, .15]) were highest, followed
by tract disconnections (r(514) = .11, 95% CI [.11, .12))
and lesion location (r(514) = .04, 95% CI [.03, .04]). How-
ever, these associations were small (<.20) (Gignac &
Szodorai, 2016) indicating that the similarity in cognitive
profiles was only partially explained by similarity in lesions
and their corresponding disconnections.

Next, analyses were conducted to evaluate whether
these results were modulated by premorbid brain health
(i.e., Global Cortical Atrophy Score + Fazekas score), the
type of stroke damage (e.g., haemorrhages vs. ischaemic
stroke), and the time between stroke and testing. Within
premorbid brain health analyses, the association between
cognition and network-level disconnections was very low
in the severe group (r(92) = .04, 95% CI [.01, .07]) and

1 The number of patients on which the association was based.
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moderate in the two groups with less severe atrophy and
white matter lesions (mild: r(94) = .24, 95% CI [.21, .26],
moderate: r(89) = .28, 95% CI [.26, .31]) (Fig. 11). Lesion
location had the highest association with cognitive pro-
files in the mild brain health group (mild: r(94) = .11, 95%
ClI [.08, .13], moderate: r(89) = -.04, 95% CI [-.06, -.02],
severe: r(92) = .02, 95% CI [.00, .04]). Lesion volume had
the highest association with cognitive profiles for the
moderate brain health group (moderate: r(89) = .28, 95%
Cl [-.26, .31], mild: r(94) = .16, 95% CI [.14, .19], severe:
r92) = .14, 95% CI [.11, .16]). These results suggest a
stronger association between lesion location (and corre-
sponding tract and network-level disconnections) with
the cognitive profile in patients with less severe atrophy
and white matter lesions. In the group of patients with
more severe atrophy and white matter lesions, lesion vol-
ume was the best predictor of cognitive profiles, sug-
gesting that severity of impairments may become more
important than the type of impairment.

For time since stroke, the association of cognitive simi-
larity and disconnection profile was similar between the
hyper-acute stroke patients (<7 days) (r(344) = .15, 95% CI
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[.14, .16]) and patients tested later after stroke (r(59) = .17,
95% CI [.14, .21]). The group tested in between 1- and
2-week post-stroke had the highest association (r(66) =
27, 95% CI [.25, .29]). As time after stroke increased, the
association with lesion volume increased, progressing
from .16 (95% CI [.15, .17]) to .20 (95% CI [.17, .283]), while
the association with lesion location decreased from .04
(95% CI [.04, .05]) to .00 (95% CI [-.08, .04]).

Last, we assessed the associations between cognitive
and neuroanatomical similarity in haemorrhagic versus
ischaemic stroke patients. The disconnection profile had
a similar association with cognition in both groups (hae-
morrhage: r(78) = .19, 95% CI [.16, .23], ischaemic:
r257) = .21, 95% CI [.20, .22]). Lesion volume was more
strongly associated with cognition in the ischaemic
(r(257) = .21, 95% CI [.20, .22]) than in the haemorrhagic
group (r(78) = .11, 95% CI [.08, .14]), while lesion location
was less strongly associated with cognition in the isch-
aemic (r(257) = .02, 95% CI [.00, .03]) than in the haemor-
rhagic group (r(78) = .12, 95% CI [.09, .15]).

4. DISCUSSION

This study’s results indicate that patterns of PSCI can be
captured by underlying behavioural classes, and that
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these classes cannot be entirely explained by differences
in lesion anatomy. This study used data-driven analyses
to identify viable class solutions (5-class and 13-class).
While classes were differentially associated with broad
anatomical characteristics, lesion anatomy alone was
insufficient to explain class separation. Overall, these
results provide novel insight into the underlying structure
of PSCI impairment, providing important theoretical
groundwork necessary to support future translational
work and theoretical research.

4.1. Interpretation of cognitive profiles yielded by
simple and complex class solutions

This investigation yielded two viable distinctions of PSCI
profiles: a 5- and a 13-class solution. Some aspects of the
simpler, 5-class solution are comparable with the PCA
solutions reported by Corbetta et al. (2015) and Bisogno
et al. (2021), but there are also key differences. That is, our
5-class solution captures two profiles of classic cognitive
deficits which occur following left- and right-lateralised
stroke (left stroke with aphasia, right stroke with neglect).
However, our 5-class solution also captures profiles that
do not represent such classical deficits. For example,
class 1 included patients with non-language impairments
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(e.g., memory, numerical cognition) while class 5 captured
right hemisphere (and some left hemisphere) patients with
non-lateralised attention deficits without neglect. Impor-
tantly, our 5-class solution also reflects that not all stroke
survivors exhibit severe stroke-related cognitive impair-
ment (Class 4). This class was associated with smaller
lesions, better premorbid health, younger age, and higher
education levels, highlighting the protective role of brain
and cognitive reserve (Casolla et al., 2019; Contador
et al., 2023; Dacosta-Aguayo et al., 2014; Stebbins et al.,
2008; Umarova, 2017). Importantly, this class cannot be
conceptualised as representing patients without cognitive
impairment as many patients in class 4 still exhibited cog-
nitive impairment. Given the diversity of lesions and cog-
nitive impairments in this class, considering a more
detailed class structure provides more insight into differ-
ent subtypes of comparatively mild PSCI.

The 13-class solution provided a richer perspective on
PSCI, distinguishing 4 left-lateralised, 4 right-lateralised
and 5 non-lateralised profiles. These non-lateralised pro-
files capture important variability in PSCI profiles, partic-
ularly with respect to premorbid cognitive status. In the
complex solution, the right-lateralised profiles were char-
acterised by different types of visual-attentional impair-
ments. Specifically, class 3 captured severe and global
neglect and visual field impairment which impacted per-
formance on all tasks involving a visual component. This
profile was linked to large lesions impacting regions
within (and connections between) early visual areas and
regions of the posterior parietal cortex traditionally asso-
ciated with neglect (Moore, Milosevich et al., 2023). This
captures the common clinical presentation of comorbid
neglect and visual field impairment which can be difficult
to behaviourally distinguish. A second group (class 8)
exhibited left egocentric and allocentric neglect and was
associated with lesions in the right insula and superior
temporal gyrus (both regions associated with neglect;
Chechlacz et al., 2012; Molenberghs et al., 2012; Moore,
Milosevich et al., 2023). Interestingly, this group exhibited
worse premorbid brain health compared with other
groups. This result aligns with previous work suggesting
that older patients with worse brain reserve were more
likely to have spatial neglect (Umarova, 2017) and adds
to this that patients with worse premorbid brain health
have a higher risk of presenting multiple comorbid, rather
than isolated neglect deficits.

The third right-hemisphere class (Class 10) captured
cases of left egocentric neglect which occurred with few
comorbidities, and was linked to lesions in the right
putamen, thalamus, and pre- and postcentral gyri,
which have previously been associated with directional
motor biases and egocentric neglect (Grimsen et al.,
2008; Sapir et al., 2007). Interestingly, this class was
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mainly linked to disconnection in the right ventral atten-
tion network, while the other neglect classes were
mainly linked to visual network disconnection. Taken
together, the three left-neglect classes align with previ-
ous conceptualisations of neglect as a deficit which rep-
resents a common symptom of multiple underlying
causes (Husain et al., 2001; Mattingley et al., 1998). The
last right-hemisphere class (class 9) included patients
with non-lateralised attentional impairment. This class is
analogous to class 5 from the 5-class model as it simi-
larly includes patients who likely suffer from general
attentional deficits.

In terms of left-hemisphere profiles, two classes cap-
tured patients with differing severity of aphasia. Class 6
represented the classical, pure aphasia profile (anomia,
alexia, and agraphia) and was accordingly associated
with large lesions affecting key language areas (Friederici,
2015; Oh et al., 2014; Vinas-Guasch & Wu, 2017). Class
13 included patients with aphasia occurring alongside
widespread multi-domain impairments. In line with past
work, this globally impaired group exhibited worse pre-
morbid brain health (Casolla et al., 2019; Stebbins et al.,
2008) and was associated with large lesions affecting
language and memory regions (Lim & Alexander, 2009).
Notably, these two profiles do not align with classic apha-
sia distinctions (Landrigan et al., 2021; Wilson & Hula,
2019). This finding suggests that subtypes which are
often prioritised in the neuropsychological literature may
capture theoretically important special cases rather than
representing the symptom variability characteristic of the
clinical population.

The third left-hemisphere group (Class 1) was charac-
terised by right-lateralised neglect. We have previously
found interhemispheric disconnections to be associated
with right neglect (Moore et al., 2021), and the present
study expands on this with interhemispheric disconnec-
tions mainly between left frontotemporal areas and right
posterior parietal regions. The remaining group (Class 12)
included patients with left hemisphere strokes and com-
paratively mild rates of language and numerical cognition
impairment.

The remaining five cognitive profiles were not later-
alised and were not associated with any significant lesion
correlates but reflect the importance of premorbid brain
health. First, Class 4 was characterised by low rates of
cognitive impairments coupled with better premorbid
brain health, younger age, and higher education levels
(analogous to Class 4 from the 5-class solution). Class 2
was characterised by memory impairments and non-
lateralised cancellation task impairment, likely capturing
pre-morbid cognitive decline (Yanhong et al., 2013).
Class 11 included patients with executive function impair-
ment. Given that this class exhibited lower lesion sizes
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coupled with worse atrophy and white matter integrity, it
is likely that executive dysfunction is more closely related
to general brain health than to the acute stroke event.
Class 5 captured a small portion of patients who exhib-
ited right-lateralised neglect coupled with memory and
praxis impairments. Finally, class 7 captured patients
with numerical cognition and memory impairment who
exhibited lower education levels and worse atrophy.
These results highlight that the clinical picture of
premorbid impairment and cognitive reserve can be dis-
tinctly and qualitatively different from classical PSCI pro-
files which are more linked to lateralised lesions.

4.2. Cognitive profiles cannot be fully explained by
lesion anatomy

Although several profiles mapped onto lesion locations,
lesion location itself played a limited role in explaining pro-
files, as lesion similarity was only weakly associated with
cognitive similarity. Our results highlight key factors which
limit the explanatory power of lesion location. Mainly,
lesion location was less predictive of cognitive similarity
for patients with worse premorbid health. This finding
aligns with past work suggesting that the impact of stroke
lesions may be modulated by general brain health (Hobden
et al., 2024; Rost et al., 2022). For the mild brain health
group, the stroke-induced disconnections were the best
predictor of the cognitive profile. Lesion volume was less
important, potentially reflecting patient’s ability to com-
pensate for the impact of stroke as white matter tracts are
more intact. In the moderate brain health group, stroke-
induced disconnections and lesion volume were equally
strong predictors of the cognitive profile. Lesion volume
may play a more pronounced role for these patients, as
they are less able to compensate for the stroke impact.
Last, in the severe brain health group, where white matter
tracts are severely impacted by white matter lesions, the
stroke-induced functional disconnections have little pre-
dictive strength anymore. In this group, diffuse brain injury
which has accumulated over time results in cognitive pro-
files that are no longer typical of focal strokes. The reduced
impact of lesion volume for this group may also reflect the
increasing role of cognitive impairment related to non-
focal vascular changes in the brain.

Additionally, lesion anatomy was a better predictor of
the PSCI profile in patients assessed in the hyper-acute
phase (e.g., <7 days post-stroke). This non-linear rela-
tionship is likely driven by non-linear patterns of cognitive
recovery occurring within the very early period post-
stroke (e.g., steep initial recovery, followed by slower
changes; Nijboer et al., 2013). This recovery dynamic
make brain—behaviour relationships less clearly defined
as time progresses following stroke (de Haan & Karnath,
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2018; Karnath & Rennig, 2017). Additionally, some
patients may receive targeted PSCI therapies. As therapy
approaches (and individual response to treatment) differ
dramatically, variance explained by anatomy may reduce
as therapy time increases. Notably, disconnection pat-
terns were identified as an important driver of cognitive
variability as lesion-induced disconnections at the tract
level and network level were stronger predictors of the
PSCI profile than lesion location itself. This finding is in
line with past studies illustrating that disconnection met-
rics help account for important variability in post-stroke
brain-behaviour relationships (Griffis et al., 2021;
Salvalaggio et al., 2020).

This study employed routinely collected data including
a short cognitive screen and clinical neuroimaging. While
this approach maximises the size and representativeness
of this study, it is possible that this approach may not
fully capture the association between lesion and cogni-
tive profiles. For example, more extensive neuropsycho-
logical batteries could be used to tease apart more
fine-grained relationships (Gell et al., 2024; Salvalaggio
et al., 2020). This study also used data from three OCS
language versions (Dutch, Italian, and English) which
each has small differences in test materials and scoring
procedures (e.g., age/education specific scoring). The
analyses presented in Supplementary Materials S2 indi-
cate that these test version differences have not signifi-
cantly impacted the conclusions of this study.

In addition, in vivo tractography could be used to cap-
ture key sources of variability in disconnectivity which may
account for a significant portion of the variance in cognitive
profiles (Lim & Alexander, 2009; Rost et al., 2022). Addition-
ally, the Fazekas ratings on the clinical CT scans are likely
underestimating the importance of white matter integrity.
While previous work has validated the Fazekas scale for
use in CT (Rudilosso et al., 2017) and provided evidence
that MR and CT imaging produce comparable results in
lesion mapping analyses (Moore, Jenkinson et al., 2023), it
is possible that the combination of MR and CT used in this
study may have induced some variability into the neural
results due to differences in sensitivity to lesion damage.
However, past research has suggested that the benefits of
combining MR and CT imaging in lesion mapping analyses
generally outweigh this potential added noise (de Haan &
Karnath, 2018; Moore, Jenkinson et al., 2023). This study
used routine neuroimaging data collected within <31 days
of stroke. Past studies have demonstrated that these data
are of sufficient quality to detect established brain-
behaviour relationships (Moore & Demeyere, 2022; Moore
et al., 2024), but neuroimaging data collected in the early
time window post-stroke (e.g., <1 day) may have compar-
atively low sensitivity to lesion damage (Lansberg et al.,
2000; Mohr et al., 1995). Additionally, this study includes
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only scans demonstrating clearly visible lesion boundaries
as determined by expert raters. This means that the high
false negative rate associated with acute CT stroke imag-
ing likely increased the proportion of patients excluded but
does not necessarily reduce the utility of scans depicting
clear lesion boundaries.

Importantly also, individual tests may not directly map
onto a single cognitive function, in spite of their main
source of variance mapping onto specific cognitive
domains (losa et al., 2022; Moore et al., 2024). For exam-
ple, individual OCS test scores may measure several
(potentially dissociable) cognitive functions concurrently
(Demeyere et al., 2015). Latent class models cannot
distinguish between this case and true comorbidities,
meaning that they can overestimate the number of sub-
populations (Lubke & Muthén, 2005). This may lead to an
overestimation of the number of true classes. Factor mix-
ture models are theoretically the most plausible model to
explain PSCI variances/covariances. Factor mixture
models assume that there are dimensions (cognitive
functions) underlying test performance, but that there are
also distinct subpopulations (Lubke & Muthén, 2005).
However, factor mixture models can only be used when
data are available from several subtests loading onto the
same cognitive function. This requirement is typically not
met for large stroke datasets, meaning that more exten-
sive behavioural data are needed before factor mixture
modelling can be used to explore PSCI. Moreover, future
studies must investigate the replicability of the PSCI pro-
files and investigate whether the PSCI profiles predict
differential recovery (Demeyere & Moore, 2024).

Neuroimaging and neuroimaging-derived metrics
were only available for a subset of the patients included
in this study, and some behavioural classes (Classes 1, 2,
5, 7, and 11) had insufficient lesion data to facilitate sta-
tistical brain-behaviour inferences. While the identified
clusters were largely consistent between the full sample
and the subsample with available neuroimaging (Supple-
mentary Materials S3), some profiles were less consistent
due to the small number of patients with lesion maps
(Class 5 and Class 11 in the 13-class model) and could,
therefore, not be included in the VLSM and network anal-
ysis. Future work with access to larger imaging samples
is needed to clarify the neural correlates of these classes.
Notably, even though lesion data were not available for all
patients, the subsample included in these analyses is
substantially larger than previous similar studies. For
example, Filler et al. (2024) reported average sample
sizes of 397 and 218 for studies investigating the relation-
ship between PSCI and white matter hyperintensities and
atrophy, respectively. Previous work has shown that
lesion mapping analyses (both univariate and multivari-
ate) are prone to some degree of results mislocalisation
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(lvanova et al., 2021; Mah et al., 2014). For this reason,
this study does not aim to draw causal associations
between brain-behaviour relationships but instead aims
to provide a qualitative description of the lesion profiles
associated with each identified behavioural profile. Future
studies can also aim to explore the extent to which spe-
cific neuroimaging analysis parameters (e.g., normalisa-
tion algorithm, normalisation template) may influence the
results of lesion mapping analyses.

Overall, the results of this study reveal that PSCI is
heterogeneous, encompassing both domain-specific
profiles linked to focal lesions sites and profiles that
are more strongly associated with premorbid health
and demographic factors. Focusing merely on low-
dimensional solutions of PSCI may reveal the strongest
factors, but more complex solutions may help capture
critical cognitive profiles which more accurately cap-
ture the variability present in real-world clinical popula-
tions. Future clinical studies can aim to build on this
work by exploring whether cognitive profiles can be
used to inform clinical care by evaluating associations
with both cognitive, physical, and quality of life recov-
ery outcomes.
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The behavioural data of the UK-OCS are publicly avail-
able on the DPUK platform. The OCS-NL data and
main scripts to replicate our analysis are available on
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