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Summary
Background Survivors of stroke are at a higher risk of cognitive syndromes, including dementia and delirium. Timely 
identification of those at-risk for cognitive syndromes could ensure better clinical management and implementation 
of risk reduction strategies. This study updates and appraises current evidence on prognostic accuracy of 
multicomponent risk models for post-stroke cognitive syndromes.

Methods In this updated systematic review, we searched multidisciplinary electronic databases between November 
2019 and October 2024 for relevant studies. An updated search was conducted on May 30, 2025. Studies were 
included if they described a multicomponent risk prediction tool developed in a stroke population (aged ≥18 years), 
free of cognitive impairment/dementia at baseline, with no exclusions on language. All study designs of primary 
research were eligible provided the study reported a multicomponent model at any point to predict participant 
cognitive outcomes i.e., incident cognitive impairment, dementia or delirium. Multicomponent refers to having 
more than one feature in the model e.g. if the study only reported the discriminatory accuracy of a cognitive 
score this was not eligible. All studies had to report sufficient discriminative performance metrics to assess model 
performance. Data were extracted from selected studies using a pre-specified proforma. Risk of bias was assessed 
using the Prediction model Risk of Bias Assessment Tool (PROBAST), certainty of evidence by GRADE, and 
between-study heterogeneity via I-squared (I 2 ) statistics. Our study was preregistered with PROSPERO 
(CRD42024601845).

Findings From 16,259 articles, 20 new studies contributed 31 models for post-stroke cognitive impairment and/or 
dementia and six models for post-stroke delirium with most developed in Asia (n = 12). Most models (n = 10) 
used logistic regression, with some using machine learning methods (n = 5). Development cohorts were small 
(mean n = 677). The pooled c-statistic for post-stroke cognitive impairment and delirium were 0.81 (95% CI 
0.77–0.85, I 2 95.7%) and 0.85 (95% CI 0.77–0.93, I 2 52.7%), respectively. Three models externally validated (C-
statistic: 0.72–0.91); and two models underwent temporal validation (AUC 0.81–0.82). Eight studies included 
measures of calibration which all demonstrated good calibration. Most studies (n = 17) were deemed to have low 
risk of bias and applicability concerns but overall certainty of evidence by GRADE was low.

Interpretation Development of risk models to predict cognitive syndromes post-stroke has increased. Development 
cohorts remain small, largely developed in Asia with very few assessing model transportability. Future studies
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should pool data and utilise the potential of routinely collected large datasets. Stakeholder engagement and cost-
effectiveness of risk-stratified interventions are needed prior to clinical implementation.
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Introduction
Stroke-survivors frequently report multiple clinical and 
social needs which often remain unmet long after their 
stroke. 1 These unmet needs include less visible deficits 
in areas such as cognition, fatigue and emotional 
wellbeing. 1 Until cognitive deficits are identified, gaps 
in patient care and post-stroke sequelae will continue to 
impact patients and their families 2 due to the associa-
tions between general cognitive impairment and activ-
ity limitations and participation restrictions. 3 

Post-stroke cognitive impairment (PSCI) is common 
in the first-year post-stroke 4–6 with domain-specific im-
pairments in memory, attention and executive function 
being most severely and often affected. 7 Incidence of 
dementia is nearly 50 times higher than the general

population in the year following a major stroke. 8 

Although there are often improvements in domain-
specific cognitive deficits in the first months 9 and 
long term after stroke, 10 global cognitive decline is 
common in the first year and beyond. 4 Approximately 4 
in 10 stroke survivors will have PSCI (no dementia), 11 

and 1 in 10 stroke-survivors develop dementia soon 
after their first stroke. 12 PSCI can also persist in the 
long term, 13 even in those strokes considered to be 
“minor”. 14 PSCI is also associated with the long term 
risks of mortality and recurrent stroke 15 as well as de-
pendency, depression and care-home admission. 16 In 
addition, delirium is also common post-stroke and an 
under-recognised contributor to cognitive impairment 
in older adults. 17 As an independent risk factor for

Research in context

Evidence before this study
International guidelines recommend the development of 
robust methods to identify future dementia risk so that they 
can be stratified to future interventions. Since the first review 
of multicomponent risk prediction scores (n = 11) to predict 
cognitive syndromes in stroke was published in 2021, there 
has been significant momentum and research in this field, 
particularly in Asia. Systematic reviews that coherently bring 
together and appraise the evidence in this field are difficult 
due to the heterogeneity across studies. In this systematic 
review, we update the evidence base and bring uniformity to 
this field.

Added value of this study
In this updated systematic review, we searched 
multidisciplinary electronic databases between November 
2019 to October 2024 for relevant studies, with a search 
update on May 30, 2025. 20 new studies contributed 31 
models for post-stroke cognitive impairment and dementia 
plus six models for post-stroke delirium, with more advanced 
modelling techniques beyond traditional Cox or Logistic 
regression modelling being employed, such as machine 
learning. While models incorporate evidenced-based features 
such as age, education, stroke severity, diabetes and white 
matter hyperintensities, many include numerous risk factors 
that have not been proven to have prognostic utility in other 
studies. Despite recommendations from the previous review 
to use best practice guidelines to develop the models, very

few assessed transportability through external (n = 3) or 
temporal (n = 2) validation and the datasets used were 
generally small (mean, n = 677), with the predominance of 
Asian developed models reducing generalisability to other 
settings. Overall certainty of the evidence was also low as 
assessed by GRADE.

Implications of all the available evidence
Our findings show that no current models to predict 
cognitive syndromes post-stroke can be recommended for 
clinical use due to developmental limitations, particularly the 
lack of external validation, small sample sizes and lack of 
certainty of the current evidence base. Whilst more advanced 
statistical methods are being employed, tools must be 
clinically interpretable and utilise features that are evidence-
based for post-stroke cognitive syndromes. Harmonising 
cohorts or utilising electronic health records, alongside 
innovative methods to identify risk factors, could advance 
this field by revealing non-traditional relationships and 
enhancing the understanding of the complex interplay 
between known and not yet known risk factors for post-
stroke cognitive difficulties. There is still a substantial gap 
between development of risk models and subsequent clinical 
implementation which needs to be addressed. Future 
research needs to consider the cost-effectiveness of models, 
intervention development to reduce risk and key stakeholder 
engagement prior to their adoption.
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dementia, preventing or minimising delirium could 
mitigate long-term cognitive decline. 18 Early identifica-
tion of individuals at risk of post-stroke cognitive syn-
dromes could facilitate timely support for stroke-
survivors, families, and caregivers. Additionally, recog-
nising at-risk groups could enable stratification for 
targeted, risk-reduction interventions, which is recom-
mended in international guidance. 19

A previous review in 2019 identified 11 prognostic 
models, seven for PSCI and four for delirium. 20 Rec-
ommendations on their use was limited by high risk of 
bias and lack of evidence for transportability e.g. 
external validation. 20 Recent attempts to update the 
literature have either included models that used ma-
chine learning 21 or did not exclude studies where 
stroke-survivors may have had cognitive impairment at 
baseline. 22 Exclusion of baseline cognitive impairment 
and dementia prior to a stroke is key to ensuring model 
comparability and reducing bias. Since 2019, there have 
been significant methodological advances to prediction 
model development as well as a substantial increase in 
the models being developed particularly in the general 
population for dementia prediction. 23 With the 
increased emphasis on identifying those at-risk with 
risk reduction strategies being advocated for dementia 
as a whole, it is important that a synthesis of the liter-
ature is conducted in the context of stroke.
We aimed to update the original systematic review 20 to 

identify, describe and appraise contemporary literature 
and the certainty of current evidence on prediction models 
for PSCI and post-stroke delirium. This review will bring 
together the findings of the original systematic review to 
provide a comprehensive overview of the features used in 
these models and the current state of the evidence.

Methods
Study design and ethics
An updated systematic review was conducted and re-
ported in alignment with the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines. 24 Given this is a systematic review and meta-
analysis, no ethical approval or informed consent was 
required for this work.

Search strategy and selection criteria
An information specialist (LE) ran the search. Title and 
abstract screening were performed on Rayyan by at 
least 2 authors (RDI, SS, FM, EJ). Full text review was 
conducted using Covidence systematic review software 
by at least 2 authors (RDI, SS, FM, EJ, JD, CB, LG, JB). 
The review was registered with PROSPERO (ID: 
CRD42024601845). 25

The following databases were searched: MEDLINE 
(Ovid), EMBASE (Ovid), PsycINFO (Ovid), CINAHL 
(EBSCO) and The Cochrane Library. See Supplementary 
Material for the search terms used. The previous review

had completed their search up to Nov 13, 2019. In this 
update we conducted a search from the last search 
month (November 2019) to Oct 15, 2024 to ensure no 
relevant studies were omitted. For all databases, the 
search terms included those relevant to stroke, cognition 
and prognosis. An updated search was conducted on the 
May 30, 2025.
Studies were eligible if they included a) participants 

who were aged 18 or over, b) people with a clinical 
diagnosis of stroke and c) undertook assessments of 
cognitive status for PSCI, post-stroke dementia or post-
stroke delirium in people free of dementia/cognitive 
impairment at baseline pre-stroke. There was no re-
striction on length of follow-up interval and cognitive 
recovery studies were excluded. Studies that included 
pre-morbid cognitive impairment and those that did not 
specify whether the population included those with 
baseline cognitive impairment or dementia were 
excluded to ensure homogeneity in our final selection 
of studies. All study designs of primary research were 
eligible provided the study reported a multicomponent 
model at any point to predict participant cognitive 
outcomes i.e., incident cognitive impairment, dementia 
or delirium. Multicomponent refers to having more 
than one feature in the model e.g. if the study only 
reported the discriminatory accuracy of a cognitive 
score this was not eligible. All studies had to report 
sufficient discriminative performance metrics to assess 
model performance. We excluded studies that a) 
involved participants who had subarachnoid haemor-
rhage; b) predicted performance on a single cognitive 
domain only (e.g. language); and c) did not have results 
available in a full published paper in a peer-reviewed 
journal e.g. conference abstracts. No restrictions were 
placed on study setting, length of time from index 
stroke to follow-up or language.

Data extraction, quality assessment and certainty 
of evidence
One author (EYHT) used a pre-specified proforma to 
extract data from the included studies which was veri-
fied by another author (JB). This included information 
on: study setting and design, sample characteristics, 
predictors/features and outcome variables, methods of 
model derivation, validation and measures of prediction 
rule performance including discrimination and cali-
bration. Validation was further grouped by the type of 
validation performed e.g. internal, external or temporal 
validation 26 where temporal validation uses the same 
study setting but participants sampled at a different 
time point. Risk of bias was assessed by the Prediction 
model Risk of Bias Assessment Tool (PROBAST). 27 The 
tool consists of four domains: participants, predictors, 
outcome and analysis. Each domain is appraised sepa-
rately and then considered together to make an overall 
judgement on risk of bias. Further, three study do-
mains: participants, predictors and outcome are rated
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on applicability i.e., the relevance to the populations 
and settings that the study targets.
We also used GRADE (Grading of Recommenda-

tions, Assessment, Development, and Evaluations) (TQ) 
to evaluate the certainty of the overall body of evidence 
across both reviews. We appraised the limitations due 
to risk of bias, inconsistency, imprecision, indirectness 
and publication bias.

Assessment of features
To harmonise all known risk variables in all risk pre-
diction models for PSCI and post-stroke delirium, we 
ensured this current update followed the same frame-
work and guidance as the original review. 20 We then 
categorised the known features across all models to 
provide an overview and appraise the features that are 
currently being used in this field.

Post-Hoc data synthesis
Results were narratively summarised using descriptive 
measures such as frequencies and percentages for cat-
egorical variables and mean and SD (or median and 
interquartile range [IQR]) for continuous variables. 
The retrieved discrimination measure (i.e., c-index, 

or area under the receiver operating characteristics 
[ROC] curve, AUROC) for a developed model was 
summarised into a weighted average. For each study, 
we identified the main or recommended model, and 
average estimate if multiple models are fitted without 
any preferred model. For any c-statistic, if 95% confi-
dence interval (CI) was not reported then we estimated 
it using the observed events and sample size as sug-
gested by Debray et al. 28 In meta-analysis, we separately 
pooled reported c-indices from prediction models when 
developed for post-stroke cognitive impairment 
including dementia, or delirium. We used random-
effects model with restricted maximum likelihood 
(REML) estimation for pooled estimate, and the 
Hartung-Knapp-Sidik-Jonkman (HKSJ) method to 
calculate its 95% CIs. 29 The proportion of variability in 
c-indices due to the between-study heterogeneity was 
summarised using I-squared (I 2 ) statistics (I 2 ≤ 25% for 
low, I 2 < 50% for moderate, I 2 ≥ 50% for substantial). 30 

Further, a 95% prediction interval for the random-
effects model was also reported to understand the 
possible range of c-statistic if a new model is fitted. 31 

Publication bias was assessed by funnel plot (if there 
are at least 10 studies for a given outcome), and its 
asymmetry was tested by Egger’s linear regression 
method (p < 0.1 was considered significant). A sub-
group analysis for choice of modelling approach 
(regressed-based versus machine learning) was also 
conducted to understand heterogeneity across c-indices. 
We further used univariate meta-regression to explore 
potential variation due to the age of participants, study 
sample size, follow-up time, and number of observed 
events using the random-effects model with REML

estimation. All statistical analyses were performed us-
ing Stata v19.5 (StataCorp, College Station, Texas, USA) 
using “metan” package and “meta regress” command.

Role of the funding source
The funders had no involvement in study design, data 
collection, data analyses, data interpretation, or the 
writing of the report.

Results
Summary of included studies
From 16,259 articles of the original search, 20 studies 
met the inclusion criteria, of which 17 studies (n = 31 
models with unique features) were for PSCI 32–48 and 
three studies (n = 6 models with unique features) for 
post-stroke delirium were identified 49–51 (Fig. 1). The 
updated search, performed on the 30th May 2025 yiel-
ded a further 12 studies that were eligible for inclusion. 
These are reported separately (Supplementary Table S4) 
and were not included in the analysis. The majority of 
models were developed in Asia (n = 12) (China 
(n = 9), 35,38,40,42,44–48 Thailand (n = 1), 36 South Korea 
(n = 1) 41 and Taiwan (n = 1). One study harmonised 
cohorts from France, Germany, Australia and the 
United Kingdom. 34 The sample size for PSCI ranged 
from 104 48 to 3741 33 with a sample size range for post-
stroke delirium between 102 50 –514 49 (mean for devel-
opment cohorts across both, n = 677). The proportion of 
the cohort which developed PSCI/dementia ranged 
from 10% 39 to 64%. 48 The proportion of outcomes 
ranged from 29% 51 to 50% 50 for delirium. Charac-
teristics of the included studies are described in 
Table 1.

Prediction scores for post-stroke cognitive 
impairment including dementia
Most studies (n = 15) focused on prediction of cognitive 
impairment, 32,34,35,37–48 with one study predicting PSCI or 
dementia 33 and another predicting vascular dementia. 36 

All 17 studies included a statement regarding excluding 
dementia or cognitive impairment at baseline either 
from the paper itself or in reference to the original 
cohort used. From the 17, 5 studies mentioned specific 
assessment as to how they excluded pre-morbid cogni-
tive impairment including the use of Diagnostic and 
Statistical Manual of Mental Disorders IV criteria, 32,43 

Informant Questionnaire on Cognitive Decline in the 
Elderly (IQCODE). 37,40,48 For example, Huang et al. states 
that the IQCODE was used to rule out other con-
founding factors such as pre-stroke cognitive function. 40 

In total there were 31 new models which used unique 
features rather than assessing the same features with 
different statistical analysis. All studies explicitly stated 
that individuals with pre-existing cognitive impairment 
and/or dementia were excluded. The main statistical 
methodology used was logistic regression
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(n = 10), 35–38,40–42,44,45,47 followed by machine learning 
(n = 5) 32,34,39,46,48 and then Cox regression (n = 2). 33,43

Numbers of variables ranged from two 43,45 (where 
the prognostic nutritional index utilises 2 blood marker 
features) to 30 41 (Table 2). Across both reviews, de-
mographic information such as age and education were 
the most commonly used variables (n = 22). 32–48,52–56 

Health factors were the least featured category with 
five models including smoking status, 37,41,43 alcohol 
consumption 37 and transfer from hospital to a facility. 33 

The previous review did not identify any models which 
used health factors. The next two most common categories
for features were imaging (n = 17) 32,34,36–38,40,41,43–47,52–54,56,57 and

medical history (n = 15). 32,33,35–37,39–43,46–48,53,55 For medical
history, the two most common comorbidities included 
in the studies were diabetes (n = 8) 35,37,39,41–43,46,53 and 
previous stroke or TIA (n = 8). 32,36,37,41,42,46,47,55 Compared 
to the previous review where no models used any lab-
oratory markers. In this update, seven studies included 
laboratory (including genetic 33 ) markers in their 
models. 33,35,37,38,41,42,45,47 These markers included both 
single value markers (e.g. fasting blood sugar, 41 

APOEe4 33 and HbA1c 38 ) and specific scores utilising 
blood markers such as the prognostic nutritional in-
dex, 45 the systemic inflammatory response index 35 and 
the systemic immune inflammation index. 47 Across

Fig. 1: PRISMA 2020 flow diagram for updated systematic reviews.
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Study Country Setting Design Stroke type Development sample size, N Mean
 
age

Post-stroke cognitive impairment 
Cox regression

Ashburner 2024
 

33
 US Primary Care Practice-Based 

Research
 

Network at 
Massachusetts General Hospital 

Retrospective
cohort

Ischaemic stroke 3741 71.4
 

years (SD: 11.8)

Molad 2019
 

43 Israel Department of Emergency 
Medicine at Tel-Aviv Medical 
Centre; Tel-Aviv Brain

 
Acute 

Stroke Cohort (TABASCO)

Prospective cohort Mild/moderate first acute 
ischemic stroke or transient 
ischemic attack

397 66.9
 

± 9.7 years

Logistic regression
Chu 2023 

35
 China Minhang Hospital of Fudan

 
University

Prospective cohort Acute ischaemic stroke 1342 68
 

years

Dharmasaroja 2022 
36 Thailand Thammasat University Hospital Prospective cohort Ischaemic stroke 177 Non-dementia mean

 
age 

61.7 years, vascular dementia 
mean

 
age 74.5 years

Georgakis 2023 
37 Germany Multicentre hospital-based cohort 

study across 7 tertiary stroke 
centres

Prospective cohort Acute stroke 666
 

in
 

total sample 67.9
 

years

Gong 2021 
38 China Stroke centre Prospective cohort Acute ischaemic stroke 228 62.16

 
years

Huang 2022 
40 China Second Affiliated Hospital of

Guangzhou Medical University and 
the Second People’s Hospital of 
Foshan

Prospective cohort Ischaemic stroke 368 71

Lee 2023 
41 South

 
Korea Tertiary academic hospital Retrospective 

cohort 

Acute ischaemic stroke 951 65.7 ± 11.9
 

years

Ma 2022 
42 China Department of Neurology Prospective cohort Acute ischaemic stroke in

 
diabetics

161 No
 
overall cohort data

No
 

cognitive impairment: 
65 years
Mild cognitive impairment: 
68
 

years
Severe cognitive impairment: 
74
 

years
Pan
 

2023 
44
 China Tongji Hospital, Wuhan

 
First 

Hospital, and Wuhan
 

Central 
Hospital in

 
Wuhan

 
City, Hubei 

Province

Prospective cohort Acute ischaemic stroke 676 60
 

years

Wang 2024
 

45
 China Neurology Department (Forst 

Hospital of Jilin
 

University) 
Prospective cohort Acute mild ischemic stroke 285 62.3 years

Zhao
 

2024
 

47 China First Hospital of Jilin
 

University Prospective cohort Acute minor ischemic stroke 
and TIA

224 61 years

Machine learning 
Aamodt 2021 

32 Norway Five Norwegian
 

hospitals (Nor-
COAST)

Prospective cohort Acute ischaemic or haemorrhagic 
stroke

203 Not specifically stated for this 
subgroup but overall cohort was 
71.7 years

Betrouni 2022 
34 Harmonised cohorts—

 STROKOG
 

(France, Germany, 
Australia, United Kingdom)

STROKDEM, DEDEMAS, Sydney 
Stroke Study, STRATEGIC

Prospective cohort Acute stroke 327 STROKDEM
 

64.09
DEDMAS 70.25
Sydney Stroke Study 72.01 
STRATEGIC

 
69.47

Hasan
 

2024
 

39 Taiwan Taipei Medical University: Taipei 
Medical University Hospital 
(TMUH), Wanfang Hospitals, and 
Shuang-Ho

 
Hospital.

Retrospective
cohort

Stroke 2234
 

(n
 

= 1787 for 
training and 447 for 
testing)

Shuang-Ho
 

= 65.88
TMUH

 
= 68.77

Wangfang = 69.23

(Table 1 continues on
 

next page)
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both reviews there were a total of 101 unique variables 
with imaging variables being the most frequently re-
ported (demographics = 5, medical history = 31, 
symptom severity = 2, stroke type = 4, imaging = 34, 
laboratory markers = 13, baseline function = 9, health 
factors = 3) (Supplementary Table S1). Further across 
both reviews, the most common variables were age 
(n = 18) and education (n = 16) followed by stroke 
severity measured by the National Institutes of Health 
Stroke Scale score (n = 9) and variables associated with 
White Matter Hyperintensities (n = 9) (Fig. 2) (Table 3). 
The discriminative accuracy of the models ranged 

from poor (Cox regression; AUC of 0.58 43 ) to excellent 
(Logistic regression; AUC 0.97 42 ). Three models were 
externally validated in a separate population from the 
derivation cohort (C-statistic: 0.72 (0.68–0.77)–0.91 (no 
95% CI reported) 33,39,46 with one model undergoing 
temporal validation (AUC 0.81). 38 From the seventeen 
studies, seven studies underwent assessment for cali-
bration with all models showing good calibration. 35–40,46

Prediction scores for post-stroke delirium
Similar to the previous review, the three new studies 
with models designed to predict post-stroke delirium 
between 72 h 51 and 7 days 49,50 did not exclude dementia 
or cognitive impairment at baseline. The number of 
features ranged from 2 51 to 7. 49 Across both reviews, all 
six studies 49–51,59–61 used demographic features (such as 
age) with symptom severity (measured by the National 
Institutes of Health Stroke Scale) being used in 4 of the 
studies 49,51,60,61 (Supplementary Table S2). Like models for 
PSCI and dementia, the laboratory markers were infec-
tion or inflammatory markers. 49,51,60 Across both reviews 
there are 27 unique variables (demographics (n = 1), 
medical history (n = 5), symptom severity (n = 1), stroke 
type (n = 3), imaging (n = 2), acute medical complica-
tions (n = 6), laboratory markers (n = 7), Baseline 
Function (n = 2)). There were three studies capturing six 
new models for post-stroke delirium. All models were 
developed with logistic regression with moderate (AUC 
0.77 (95% CI 0.71–0.81) 51 to high levels (AUC 0.9 (no 
95% CI reported)) 50 of discriminative accuracy. One of 
the models did perform temporal validation 50 but none 
performed external validation. Two of the models from 
one study reported good calibration. 51

Meta-analysis of model performance
Fig. 3 summarises the meta-analysis of model perfor-
mance for post-stroke cognitive impairment (17 
studies) and delirium (3 studies) outcomes. The me-
dian c-statistic (or equivalent AUROC) for cognitive 
impairment was 0.80 (IQR: 0.75, 0.97) and for delirium 
was 0.84 (IQR: 0.83, 0.90). The pooled c-statistic for 
post-stroke cognitive impairment and delirium were 
0.81 (95% CI 0.77–0.85, I 2 95.7%) and 0.85 (95% CI 
0.77–0.93, I 2 52.7%), respectively. For both outcomes, 
95% prediction interval was wide indicating varied
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Study Features (n) Outcome Ascertainment of 
cognition

Timepoint of 
outcome 
assessment

Participants with 
outcome, N 

(%)
Type of model Discrimination Calibration Validation

Post-stroke cognitive impairment 
Cox regression

Ashburner
2024

 
33

Full model: Age, 
insurance, mobility 
problems, prior history 
of falls, delirium, 
peripheral vascular 
disease, Parkinson’s 
disease, depression, 
severe chronic kidney 
disease, abnormal 
weight loss and 
anorexia, and discharge 
from

 
the hospital to

 
a 

facility (n
 

= 11)
Full model minus 
insurance (n

 
= 10)

Full model without 
excluding patients with

 
a prior history of stroke 
(n
 

= 11)

Post-stroke 
cognitive 
impairment or 
dementia

ICD-9/10
 

codes 5 years 332 (11.4%) PSCI Cox proportional 
hazards

Full model: C-statistic 
0.750

 
(95%

 
CI: 

0.726–0.775); Full 
model minus insurance 
0.749

 
(0.724–0.774) 

Full model without 
excluding patients with
a prior history of stroke 
0.750

 
(0.726–0.773)

None Internal 
validation
(n
 

= 1925 (166
 

cases) C-statistic 
0.731 
(0.694–0.768); 
External 
validation
(n
 

= 2237 (128
 

cases) 0.724
 

(0.681–0.766)

Molad 2019
 

43
 Vascular (Framingham

 risk score for stroke 
(age, systolic blood 
pressure, 
antihypertensive 
medication, diabetes, 
cigarette smoking, 
history of cardiovascular 
disease, atrial 
fibrillation), White 
Matter Hyperintensity 
Volume, lacunes, and 
CMB) (n

 
= 4)

AD
 

associated markers 
(APOE4

 
status and 

hippocampal volume) 
(n
 

= 2)

Mild cognitive 
impairment

MCI (Petersen
 

Criteria) 
Participants with

 
suspected cognitive 
impairment were 
referred to

 
an
 

experienced 
cognitive 
neurologist. 
Assessments were 
further reviewed y a 
consensus forum

 
to
 

determine MCI 
versus dementia 
(assessor, three 
senior neurologists 
and a 
neuropsychologist)

2 years 80
 

(20.2%)–9
 

developed
dementia and 71 
developed MCI

Cox regression Vascular related 
measures, AUC: 0.67 
(0.56–0.78)
AD
 

related measures, 
AUC: 0.58

 
(0.45–0.67) 

AD
 

and vascular related 
measures AUC: 0.66

 
(0.55–0.77)

None None

Logistic regression 
Chu 2023 

35 Systemic inflammatory 
response index, diabetes 
mellitus, gender, 
admission

 
NIHSS scores, 

education
 

and age
(n
 

= 6)

Post-stroke
cognitive
impairment

MMSE 2 weeks 690
 

(51.4%) Logistic regression AUC: 0.716 1000
 

bootstrap
resamples–good
agreement was
seen

 
between

 
the

predicted risk and
the observed risk
in
 

the calibration
curves for this
model. The
Hosmer–
Lemeshow

 
test

(p = 0.325) further
confirmed the
good calibration

None

(Table 2 continues on
 

next page)
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Study Features (n) Outcome Ascertainment of 
cognition

Timepoint of 
outcome 
assessment

Participants with 
outcome, N 

(%)
Type of model Discrimination Calibration Validation

(Continued from
 

previous page)

Dharmasaroja 
2022 

36
Age, education, History
of stroke, white matter 
hyperintense lesions 
(Fazekas scale), stroke 
subtype (n

 
= 5)

Vascular dementia Clinical diagnosis of 
vascular dementia 
was made by senior 
neurologists at 6

 
(±1) months after 
the stroke based on

 
NINDS-AIREN

 criteria

6
 

months 48
 

(27.1%) Logistic regression Cutoff point of ≥5, 
AUC

 
0.76

 
(0.69–0.83)

Calibration
 

was 
examined by 
plotting predicted 
probability of the 
risk score against 
the actual 
probability of the 
patients who

 
developed vascular 
dementia at every 
risk score point–the 
risk score showed 
good calibration

 

None

Georgakis 
2023 

37
Model 1 includes age, 
sex, education, vascular 
risk factors (history of 
hypertension, diabetes, 
atrial fibrillation, prior 
stroke, current smoking, 
alcohol consumption, 
body mass index, 
circulating low-density 
lipoprotein

 
cholesterol 

[LDL-C] levels), National 
Institutes of Health

 
Stroke Scale (NIHSS) and 
Montreal Cognitive 
Assessment (MoCA) in

 
the acute phase, pre-
stroke mRS, and 
normalised stroke lesion

 
volume (stroke lesion

 
volume/total intracranial 
volume) n

 
= 8)

Model 2 includes the 
global SVD

 
score 

(lacunes, white matter 
hyperintensities, cerebral 
microbleeds and 
enlarged perivascular 
spaces) + model 1 
features (n

 
= 9)

Model 3 includes 
individual SVD

 
markers 

(lacune count, deep and 
periventricular white 
matter hyperintensity 
(WMH) Fazekas grades, 
cerebral microbleed 
counts, and grade of 
perivascular
spaces) + model 1
(n
 

= 12)

Cognitive
impairment

A
 

comprehensive 
neuropsychological 
battery of tests was 
performed and 
classified in

 
five 

domains (executive 
function, memory, 
language, attention, 
and visuospatial 
function)

12 months Not specifically 
stated

Logistic regression Model 1 AUC: 0.688
 

(0.628–0.748) 
Model 2 AUC: 0.701 
(0.642–0.760) 
Model 3 AUC: 0.722 
(0.664–0.779)

Overall calibration
 

of all models was 
good (all Hosmer 
Lemeshow– 
derived goodness-
of-fit P > 0.05)

None

(Table 2 continues on
 

next page)
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Study Features (n) Outcome Ascertainment of 
cognition

Timepoint of 
outcome 
assessment

Participants with 
outcome, N 

(%)
Type of model Discrimination Calibration Validation

(Continued from
 

previous page)

Gong 2021 
38
 Age, female, Fazekas 

Score, Educational level, 
number of intracranial 
atherosclerotic stenosis, 
HbA1c and cortical 
infarction

 
(n
 

= 7)

Post-stroke
cognitive
impairment

MoCA 6–12 months 122 (53.5%) Logistic regression
 

with
 

nomogram
AUC

 
0.810

 
Calibration

 
of the

risk prediction
model was
assessed in

 
the

development
cohort by the plot
comparing the
observed
probability of PSCI
according to

 
the

total score of the
nomogram
against the
predicted
probability based
on
 

the nomogram
and by using the
Hosmer–
Lemeshow

 
test

that assesses
whether or not
the observed
event rates
matched the
expected rates in
patients with
minor stroke. The
calibration

 
curve

of the nomogram
for the predicted
probability of PSCI
in
 

patients with
minor stroke
demonstrated
good agreement
in
 

this cohort]

Temporal 
validation: Same 
centre but 
different timepoint 
n
 

= 66, AUC
 

0.812

Huang 2022 
40 Pre-stroke cognitive 

function, age, years of 
education, NIHSS at 
admission, history of 
ischaemic heart disease, 
number of chronic 
lacunar infarcts, medial 
temporal atrophy score 
(n
 

= 6)

Cognitive
dysfunction

MMSE Not stated 191 (51.9%) Logistic regression Training
C-index 0.846

 
(0.807–0.885) 
Validation

 
n
 

= 367 
(196

 
(53.4%) cases) C-

index: 0.845 
(0.805–0.885)

Bootstrap
calibration

 
plot–

good agreement
between

 
the

nomogram’s
predictions and
the actual
observed cognitive
impairment,
indicating high
predictive accuracy
(mean

 
absolute

error = 0.021)

None

(Table 2 continues on
 

next page)
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Study Features (n) Outcome Ascertainment of 
cognition

Timepoint of 
outcome 
assessment

Participants with 
outcome, N 

(%)
Type of model Discrimination Calibration Validation

(Continued from
 

previous page)

Lee 2023 
41 Age, Sex, Body mass 

index, Education
 

years, 
Previous modified 
Rankin

 
Scale, History of 

hypertension, History of 
diabetes mellitus 
History of 
hyperlipidemia, History 
of coronary heart 
disease, History of 
stroke or TIA
History of atrial 
fibrillation, Smoking 
status, Discharge, 
NIHSS, TOAST

 
classification. Multiple 
lesions
Left sided lesions 
Stroke volume (mm3) 
Presence of cortical 
lesion
Presence of subcortical 
lesion
Presence of 
infratentorial lesion

 
Presence of strategic 
lesion
Modified Fazekas score 
Any chronic microbleeds 
Total mesial temporal 
lobe atrophy
Fasting blood glucose 
Creatinine
Total cholesterol 
Hemoglobin
Systolic blood pressure, 
short geriatric 
depression

 
scale (SGDS) 

(n
 

= 30)

Post-stroke
cognitive
impairment

Korean
 

Version
 

of 
the Vascular 
Cognitive 
Impairment 
Harmonisation

 
Standards-
Neuropsychological 
Protocol (K-VCIHS-
NP)
K-MMSE
MMSE-z

3–6
 

months 290
 

(30.5%) Logistic regression
 

Support vector 
machine (SVM) 
Extreme Gradient 
Boosting (XGB) 
Artificial Neural 
Network (ANN)

K-VCIHS-NP
 
AUCs 

XGB: 0.7919
 

(0.6839–0.8866)
ANN: 0.7365 
(0.6202–0.8438)
SVM: 0.7157 
(0.5914–0.8271) 
Logistic Regression: 
0.7121 (0.5914–0.8265) 
MMSE-z AUCs
XGB: 0.7876

 
(0.6711–0.8892)
ANN: 0.7339

 
(0.6018–0.8525)
SVM: 0.7463 
(0.6191–0.8566) 
Logistic Regression: 
0.7608

 
(0.6434–0.8663) 
MMSE AUCs
SVM: 0.8751 
(0.7838–0.9472)
ANN: 0.8741 
(0.8165–0.9241) 
Logistic regression: 
0.8713 
(0.7831–0.9414)
XGB: 0.8616

 
(0.7683–0.9389)

None None

Ma 2022 
42
 Sex, age, education

 
level, recurrent cerebral 
infarction, course of 
diabetes and serum

 albumin
 

(n
 

= 6)

Post-stroke
cognitive
impairment

MoCA Not stated 94
 

(58.39%) Logistic regression AUC
 

= 0.966 None None

(Table 2 continues on
 

next page)
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Study Features (n) Outcome Ascertainment of 
cognition

Timepoint of 
outcome 
assessment

Participants with 
outcome, N 

(%)
Type of model Discrimination Calibration Validation

(Continued from
 

previous page)

Pan
 

2023 
44
 Models without 

disconnection
 

score 
(reference models) 
included 6

 
known

 
predictors: age, sex, 
education

 
level, baseline 

National Institutes of 
Health

 
Stroke Scale, 

lesion
 

volume, and 
location

 
impact score. 

(n
 

= 6)
Combined model: 
Disconnection

 
score 

(defined as the 
weighted sum

 
of voxel 

intensities (Z score 
statistics) for VDSM-
significant voxels that 
overlapped with

 
the 

patient’s disconnection-
severity map (voxel-
wise disconnection

 
severities as
weights) + Reference 
model (n

 
= 7)

Post-stroke
cognitive
impairment

MoCA 3 months 251 (37.1%) Logistic regression AUC
Training

 
(Reference 

Model)
Dataset 1: 0.738

 
Dataset 2: 0.741 
Dataset 3: 0.732 
Training

 
(Combined

 
Model)
Dataset 1: 0.796

 
Dataset 2: 0.781 
Dataset 3: 0.776

 
AUC
Testing

 
(Reference 

Model)
Dataset 1: 0.700

 
Dataset 2: 0.657 
Dataset 3: 0.694

 
Testing

 
(Combined

 
Model)
Dataset 1: 0.740

 
Dataset 2: 0.710

 
Dataset 3: 0.755

None None

Wang 2024
 

45
 Age, education, deep 

white matter 
hyperintensity (DWMH) 
(n
 

= 3)
Prognostic nutritional 
index (PNI) (serum

 albumin
(g/L) + 5 × lymphocyte 
count) (n

 
= 2)

PNI as continuous 
variables co-
diagnoses + education, 
stroke history and 
DWMH

 
(n
 

= 5)
PNI as categorical 
variable co-
diagnose + education, 
stroke history, DWMH

 (n
 

= 5)

Post-stroke
cognitive
impairment

MMSE 6–12 months 121 (42.5%) Logistic regression Age, education
 

and 
DWMH

 
AUC

 
= 73.7%; 

PNI as continuous 
variable AUC

 
= 60.7 

PNI as continuous 
variables co-
diagnoses + education, 
stroke history and DWM

 AUC
 

= 76.7%, PNI as 
categorical variable co-
diagnose + education, 
stroke history, DWMH

 AUC
 

76.1

None None

(Table 2 continues on
 

next page)
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Study Features (n) Outcome Ascertainment of 
cognition

Timepoint of 
outcome 
assessment

Participants with 
outcome, N 

(%)
Type of model Discrimination Calibration Validation

(Continued from
 

previous page)

Zhao
 

2024
 

47 Model 1: Sex, education
 

level, NIHSS score, 
hypertension, previous 
stroke, deep white 
matter hyperintensity 
score (n

 
= 6)

Model 2: Model 1+ 
neutrophil percentages 
(n
 

= 7)
Model 3: Model 1+ 
lymphocyte percentages 
(n
 

= 7)
Model 4: Model
1 + neutrophil values 
(n
 

= 7)
Model 5: Model
1 + neutrophil-to

 
lymphocyte ratio

 
(n
 

= 7) 
Model 6: Model
1 + systemic immune 
inflammation

 
index

(n
 

= 7)

Post-stroke
cognitive
impairment

MoCA 6–12 months 88
 

(39.3%) Logistic regression AUC
Model 1: 0.765 
(0.702–0.827) 
Model 2: 0.804

 
(0.747–0.861) 
Model 3: 0.796

 
(0.738–0.854) 
Model 4: 0.78

 
(0.719–0.841) 
Model 5: 0.803 
(0.745–0.86) 
Model 6: 0.799

 
(0.741–0.858)

None None

Machine learning 
Aamodt 
2021 

32
Stroke volume, 
antiplatelets, occipital 
th. (left), stroke severity, 
temporal th. (left), 
previous infarction, 
previous ICH, education

 
(years), cingulate (right) 
(n
 

= 9)

Post-stroke
cognitive
impairment

DSM-5 from
 neuropsychological 

test scores and 
instrumental 
activities of daily 
living

3 months 63 (27.8%) were 
categorised as 
having mild NCD, 
whereas 62 
(27.3%) had major 
NCD

Support vector 
machine

AUC
 

0.802 None None

Betrouni 
2022 

34
Texture features 
kurtosis and IDM

 
from

 the entorhinal cortex, 
and kurtosis and 
entropy from

 
the 

hippocampus, age, and 
baseline MoCA

 
score. 

(n
 

= 4)

Post-stroke
cognitive
impairment

Overall, cognitive 
function

 
was 

assessed by 
administering an

 
extensive battery of 
neuropsychological 
tests, classified into
5 cognitive domains 
(memory, executive 
function, attention, 
language, and 
visuospatial ability).

6–12 months STROKDEM
 

75 
(46.9%) 
DEDEMAS 11 
(19.6%)
Sydney Stroke 
Study 11 (16.2%) 
STRATEGIC

 
13 

(30.2%)

Random
 

Forest AUC
 

0.90
 

± 0.03 None 0.77

(Table 2 continues on
 

next page)
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Study Features (n) Outcome Ascertainment of 
cognition

Timepoint of 
outcome 
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Participants with 
outcome, N 

(%)
Type of model Discrimination Calibration Validation

(Continued from
 

previous page)

Hasan
 

2024
 

39
 Age, disease of the 

circulatory system, sex, 
drugs related to

 
acidity, 

antithrombotics, drugs 
related to

 
functional 

gastrointestinal 
disorders, hypnotic, 
systemic use of 
antibacterials, NSAID, 
stomatological 
preparations, 
ophthalmologicals, drugs 
for constipation, 
antidepressant, 
analgesics, cough/cold 
preparations, poorly ill-
defined conditions, 
respiratory diseases, 
diabetes drugs, diseases 
of the nervous system, 
antihemorrhagics
(n
 

= 20)

Post-stroke
cognitive
impairment

ICD-9-CM
 

and 
ICD-10

 
codes

Stroke index date 
until September 
30, 2017, or until 
their last follow-
up

319
 

(9.9%) CatBoost Classifier, 
Extreme Gradient 
Boosting, Light 
Gradient Boosting 
machine, Extra 
Tree Classifier, 
Random

 
Forest 

Classifier

CatBoost model: 
AUC

 
= 0.93

XGB
 
Classifier:

AUC
 

= 0.92
LGBM

 
Classifier:

AUC
 

= 0.92 
ExtraTrees Classifier: 
AUC

 
= 0.91

Random
 

Forest 
Classifier: AUC

 
= 0.92

Calibration
 

plots 
demonstrated well 
calibrated and 
high

 
performing 

prediction
 

model

External 
Validation: 
Wanfang. Hospital 
(n
 

= 975),
AUC

 
= 0.91

Yuan
 

2021 
46
 Years of education, 

history of stroke, history 
of diabetes, left frontal 
NAA/Cr, left thalamus 
NAA/Cr and left 
hippocampus NAA/Cr 
(n
 

= 6)

Post-stroke
cognitive
impairment

MMSE and MoCA 3–6
 

months 118
 

(31.3) LASSO
 

and 
Nomogram

AUC: 0.8935 
(0.823–0.910)

The consistency 
test between

 
the 

predicted and 
actual values 
through

 
the 

calibration
 

plot 
showed that the 
predicted 
probability of the 
nomogram

 
for 

PSCI correlates well 
with

 
the actual 

diagnosis.

External 
Validation
227 stroke patients 
(75 PSCI and
152 N–PSCI), who

 
were hospitalised 
between

 
May 2019

 
and September 
2020

 
at the Third 

Affiliated Hospital 
of Jinzhou Medical 
University (143) 
and the Central 
Hospital (84);
n
 

= 75/227
AUC: 0.8523
(0.831–0.908) 

(Table 2 continues on
 

next page)
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Study Features (n) Outcome Ascertainment of 
cognition

Timepoint of
outcome 
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Participants with 
outcome, N 

(%)
Type of model Discrimination Calibration Validation

(Continued from
 

previous page)

Zhu 2020
 

48
 Baseline MoCA

 
scores,

education, BMI and 
baseline MMSE scores 
(n
 

= 4)

Post-stroke
cognitive
impairment

MMSE and MoCA
A
 

comprehensive 
neuropsychological 
battery that 
evaluated four 
cognitive domains: 
(1) language (Boston

 
Naming Test); (2) 
visuoconstruction

 
(Clock Drawing Test; 
(3) verbal memory 
(Auditory Verbal 
Learning Test; and (4) 
executive function/ 
attention

 
(Trail 

Making Test. 
Impairment was 
defined by the 
attainment of a result 
that was 1.5 standard 
deviations below

 
the 

standardised mean. 
The diagnosis of PSCI 
required deficits in

 
at 

least one domain, as 
assessed by the 
neuropsychological 
battery.

3–6
 

months 66
 

(63.5%) Classification
 

and 
Regression

 
Tree

AUC
 

82.3% None None

Post-stroke delirium
Guldolf 2021 

49 NIHSS, age, neutrophil-
lymphocyte ratio, 
premorbid mRS, history 
of previous stroke, 
premorbid cognitive 
dysfunction

 
and hearing 

problems (n
 

= 7)

Delirium
 

DSM-5 Criteria 7 days 201 (39%) Logistic regression
 

AUC
Age and NIHSS 0.82 
(0.78–0.85)
NIHSS, age and 
premorbid cognitive 
dysfunction

 
0.82 

(0.79–0.87)
NIHSS, age and NLR

 
0.83 

(0.79–0.87)
Age, NIHSS, NLR

 
and 

premorbid cognitive 
dysfunction

 
0.84

 
(0.81–0.88) 
Dichotomised Models 
Age ≥75 and NIHSS ≥7 
0.76

 
(0.73–0.82)

NIHSS ≥7, age ≥75 
years and premorbid 
cognitive dysfunction

 
0.80

 
(0.76–0.84)

NIHSS ≥7, age ≥75 and 
NLR

 
>2.50

 
0.80

 
(0.76–0.84)
Age ≥75, NIHSS ≥7, 
NLR

 
>2.50

 
and 

premorbid cognitive 
dysfunction

 
0.82 

(0.78–0.86)

None None

(Table 2 continues on
 

next page)
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(Continued from
 

previous page)

Haight 2020
 

50
 Age greater than

 
64
 

years, presence of 
intraventricular 
haemorrhage (IVH), 
intubation, presence of 
acute kidney injury 
(AKI), and stroke with

 
either cognitive deficit, 
neglect, or aphasia
(n
 

= 5)

Delirium CAM-ICU 72 h 51 (50%) Logistic regression AUC
 

0.9 None Temporal 
validation: AUC

 
0.82 (n

 
= 100)

Klimiec-Moskal 
2022 

51
Model A: Age and stroke 
severity (NIHSS) (n

 
= 2) 

Model B: Age, stroke 
severity (NIHSS) and C

 
reactive protein

 
(n
 

= 3) 
Model C: stroke severity 
(NIHSS), atrial 
fibrillation, diabetes 
mellitus, pre-stroke 
dependency and 
haemorrhagic stroke
(n
 

= 5)
Model D: stroke severity 
(NIHSS), atrial 
fibrillation, diabetes 
mellitus, pre-stroke 
dependency, 
haemorrhagic stroke 
and C

 
reactive protein

 
(n
 

= 6)

Delirium Brief Confusion
 

Assessment Method 
(bCAM) for verbal 
patients and the 
Confusion

 
Assessment Method 
for the Intensive 
Care Unit (CAM-
ICU) for non-verbal 
patients

7 days 134
 

(29.2%) Logistic regression AUC
Model A: 0.77 
(0.71–0.81) 
Model B: 0.80

 
(0.76–0.84) 
Model C: 0.81 
(0.77–0.85) 
Model D: 0.84

 
(0.80–0.88)

Both
 

models were 
well-calibrated as 
assessed by the 
Hosmer–Lemeshow

 test (p = 0.532 for 
Model A

 
and

p = 0.253 for 
Model B).

None

Table 2: Prognostic score features, outcomes and assessment.
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model performances are expected in a new study 
(cognitive impairment: 0.66–1.00); and delirium: 
0.56–1.00). In a subgroup analysis for post-stroke 
cognitive impairment outcome (Supplementary 
Figure S1), pooled c-statistic was found to be lower 
when models fitted using regression techniques (0.79, 
95% CI 0.74–0.84, I 2 94.5%) compared to machine 
learning methods (0.88, 95% CI 0.82–0.94, I 2 72.8%). 
Potential extent of publication bias for the post-stroke 
cognitive impairment outcome presented in the funnel 
plot (Supplementary Figure S2) that indicates variation 
across the funnel however small-study effect does not 
show any statistical significance (p = 0.331). Therefore, it 
should be interpreted with caution. In meta-regression 
analysis, bubble plots show potential heterogeneity in 
each moderating factor (i.e., age, sample size, number of 
observed events, and follow-up time) however, none of 
these factors reached statistical significance 
(Supplementary Table S3 and Supplementary 
Figure S3).

Overall quality and certainty of the evidence
Seventeen studies 32,34–38,40–50 had low risk of bias across 
all domains, while three studies 33,39,51 had a high risk of 
bias due to outcome misclassification (Table 4). This 
was primarily from reliance on ICD-coded diagnoses 
rather than standardised cognitive screening tools such 
as Montreal Cognitive Assessment (MOCA) or Mini-
Mental State examination (MMSE). At present there 
are currently no clearly superior cognitive screening

tests and in particular MMSE is no worse than other 
screening tools for the diagnosis of multidomain 
impairment. 62 Applicability concerns were also noted in 
these three studies, as outcome assessment methods 
may limit clinical generalisability. 33,39,51 We performed 
GRADE assessment across prediction models for PSCI 
and delirium separately across both reviews. Overall, 
the certainly of the evidence is low across both PSCI 
and delirium models due to heterogeneity across the 
studies, the range of values for discrimination out-
comes and also a lack of pre-registered protocols 
(Supplementary Table S3).

Discussion
To our knowledge, this is the most comprehensive re-
view describing models to predict PSCI, post-stroke 
dementia and post-stroke delirium. Pooled analysis 
showed that model discrimination was good with some 
evidence that machine learning methods are generally 
higher. However, some caution is needed when 
considering clinical utility of these models. There was 
significant heterogeneity between studies. Further, 
although there has been an increase in model devel-
opment, these were generally in small samples and in 
the main from Asia. Further, few models were devel-
oped in line with best practice guidance. 63 Accurate and 
timely identification of those most at risk enables that 
these individuals have the opportunity to modify their 
risk through multimodal interventions which have

Fig. 2: Number of studies containing 3 or more features by category.
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Study Demographics Medical
history

Symptom
severity

Stroke
type

Imaging
findings

Acute
medical
complications

Laboratory
markers

Baseline
function

Health
factors

Post-stroke cognitive impairment and dementia
Chander (2017) 52 * *
Ding (2019) 53 * * *
Gong (2019) 57 * * *
Kandiah (2016) 54 * *
Lin (2003) 55 * * * * *
Munsch (2016) 56 * * *
Salihovic (2018) 58 *
Ashburner 2024 (A) 33 * * *
Ashburner 2024 (B) 33 * * *
Ashburner 2024 (C) 33 * * *
Molad 2019 (A) 43 * * * *
Molad 2019 (B) 43 * *
Chu 2023 35 * * *
Dharmasaroja 2022 36 * * * *
Georgakis 2023 (A) 37 * * * * *
Georgakis 2023 (B) 37 * * * * *
Georgakis 2023 (C) 37 * * * * * * *
Gong 2021 38 * * *
Huang 2022 40 * * * * *
Lee 2023 41 * * * * * * * *
Ma 2022 42 * * *
Pan 2023 (A) 44 * * *
Pan 2023 (B) 44 * * *
Wang 2024 (A) 45 * *
Wang 2024 (B) 45 *
Wang 2024 (C) 45 * * *
Wang 2024 (D) 45 * * *
Zhao 2024 (A) 47 * * * *
Zhao 2024 (B) 47 * * * * *
Zhao 2024 (C) 47 * * * * *
Zhao 2024 (D) 47 * * * * *
Zhao 2024 (E) 47 * * * * *
Zhao 2024 (F) 47 * * * * *
Aamodt 2021 32 * * * *
Betrouni 2022 34 * * *
Hasan 2024 39 * *
Yuan 2021 46 * * *
Zhu 2020 48 * * *

Post-stroke delirium 
Kostalova (2012) (1) 59 * * * *
Kotsalova (2012) (2) 59 * * * *
Kotfis (2019) 60 * * * *
Oldenbeuving (2014) 61 * * * *
Guldolf 2021 49 * * * * *
Haight 2020 50 * * * * *
Klimiec-Moskal
2022 51 (A) 

* *

Klimiec-Moskal 
2022 51 (B) 

* * *

Klimiec-Moskal 
2022 51 (C) 

* * * *

Klimiec-Moskal 
2022 51 (D)

* * * * *

Key: Grey Background = Previous Review; White Background = Current Review.

Table 3: Categories of features included in prognostic models across both reviews.
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already been shown to be effective for those at-risk of 
dementia in the general population. 64

When combining these results with the previous 
review, 20 there are now a total of 38 models to predict 
PSCI and post-stroke dementia and 10 models for 
predicting post-stroke delirium. Only two models un-
dertook full evaluation with discrimination, calibration 
and external validation in PSCI. 39,46 Although discrimi-
nation and stability of the models were good (AUC 
>0.80), like other models, these development cohorts 
were generally relatively small with only 3 models with 
over a thousand participants in their development 
cohort (n: 677, range: 2234 39 -376 46 ) when compared to 
risk modelling for other diseases. Another important 
aspect of model development is external validation and 
yet the validation cohorts were even smaller (n = 975 39 

and 227 46 ). Finally, there were some considerations 
around the accessibility of models, In one study, they 
avoided the use of specialist imaging markers and 
instead used primary care datasets to develop a model

for PSCI, which demonstrated moderate levels of 
discriminatory accuracy. 33

Development of stroke specific risk models is 
needed so clinicians are able to identify those at-risk of 
cognitive decline post-stroke to ensure timely access to 
risk reduction strategies. 65 Even though there are a 
significant number of models developed in whole 
populations for dementia prediction, 23,66 they do not 
work well in stroke-survivors, which may be related to 
the risk factors that are included. 67 Given the rapid in-
crease in both interest and methodological develop-
ment in dementia risk models for the general 
population, it was important to update the previous 
review to capture any new models developed specifically 
for stroke patients. Compared to the previous review, 
there has been a significant increase in the number of 
models which utilise machine learning techniques. 
Many of these models have displayed higher level of 
discriminative accuracy compared to traditional 
regression models as demonstrated in our pooled

Fig. 3: Forest plot of discriminatory accuracy by outcome.
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analysis. Machine learning has already been used to 
predict dementia in the general population with some 
evidence that these methods show better performance 
when these approaches are based on imaging data 
rather than clinical variables. 68 Though machine 
learning models tend to produce good levels of 
discriminative accuracy, one criticism is the lack of 
clinical interpretability. A review identified 92 studies 
that applied interpretable methods to machine learning 
models but tended to focus on single open-source 
datasets. 69 In this study there were attempts to try and 
make the models more interpretable. Lee et al. utilised 
the SHapley Additive exPlanations values of the best 
prediction model which was their Extreme Gradient 
Boosting (XGB) model. 41 Traditional factors that did 
rank highly included for example discharge stroke 
severity and age. However, diabetes ranked much lower 
when compared to non-evidenced based scores such as 
the short geriatric score ranking higher even though 
diabetes has consistently been significantly associated 
with PSCI. 70 Further, models tend to be developed with 
variables that are available within the dataset rather 
than focusing on evidence based known risk factors to 
build the models irrespective of what statistical 
methods are used. Some models, particularly the ones 
using machine learning, utilised many features 
(n = 30). 41 This can lead to overfitting the model due to 
the volume of variables used. In model development it 
is therefore important to ensure best practice is fol-
lowed and to take into account multiple parameters in 
model assessment rather than simply discrimination.

This would include metrics such as calibration and 
decision curve analysis for example which are incon-
sistently reported. At present the evidence around 
models for delirium is much less advanced than models 
for PSCI and dementia both in terms of the types of 
models produced and the size of the dataset. Part of this 
may be due to the challenges around recognising and 
diagnosing delirium. Hypoactive stroke-survivors can 
often be confused as having post-stroke depression and 
fatigue. 17 Further there may be issues in recognising 
delirium post-stroke despite how highly prevalent it is 
in the acute setting. 71 Further work is needed to develop 
risk prediction models in this area to ensure early 
recognition is possible to ensure appropriate interven-
tion is in place.
Known risk factors for PSCI and dementia often go 

beyond traditional features e.g. age and stroke severity. 
A recent systematic review concluded that baseline 
cognitive impairment showed the strongest association 
with both PSCI and post-stroke dementia. 70 As we 
excluded models where baseline cognitive impairment 
and dementia were included, it is not surprising that 
very few (n = 3) of the models included in this study for 
PSCI and dementia contained this feature. Two of the 
models to predict post-stroke delirium did include a 
feature associated with baseline cognitive deficit. 49,50 

Other factors that increase risk of PSCI and dementia 
in the context of stroke include diabetes, atrial fibrilla-
tion and the presence of moderate or severe white
matter hyperintensities. 49,50 Across both reviews dia-
betes (n = 8) 35,37,39,41–43,46,53 was the most common

Risk of bias Applicability

Participants Predictors Outcomes Analysis Overall Participants Predictors Outcome Overall

Aamodt 2021 32 + + + + + + + + +
Ashburner 2024 33 + + - + - + + - -
Betrouni 2022 34 + + + + + + + + +
Chu 2023 35 + + + + + + + + +
Dharmasaroja 2022 36 + + + + + + + + +
Georgakis 2023 37 + + + + + + + + +
Gong 2021 38 + + + + + + + + +
Guldolf 2021 49 + + + + + + + + +
Haight 2020 50 + + + + + + + + +
Hasan 2024 39 + + - + - + + - -
Huang 2022 40 + + + + + + + + +
Klimiec-Moskal 2022 51 + + - + - + + - -
Lee 2023 41 + + + + + + + + +
Ma 2022 42 + + + + + + + + +

Molad 2019 43 + + + + + + + + +
Pan 2023 44 + + + + + + + + +
Wang 2024 45 + + + + + + + + +
Yuan 2021 46 + + + + + + + + +
Zhao 2024 47 + + + + + + + + +
Zhu 2020 48 + + + + + + + + +

Table 4: Risk of bias assessment using the PROBAST tool.
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medically related risk factor to be included. Atrial 
fibrillation was only included in three models 37,41,43 and 
white matter hyperintensities (or Fazeka score) in nine 
studies. 36–38,41,43,45,47,52,54 Lower years of education and 
previous stroke are also known to increase risk for
PSCI 70 and again are well represented across the 
models (education n = 16 32,35–38,40–42,44–48,52,53,54 and previ-
ous stroke n = 7 32,36,37,41,46,47,55 ). Ideally, the models
themselves would contain modifiable risk factors but 
there needs to be a balance between discriminative 
ability and risk factor accessibility. This may depend on 
the purpose of the tool i.e., whether it is purely for 
identification only. Future studies should consider a 
component meta-analysis of these multicomponent risk 
prediction scores to assess the importance of risk fac-
tors across models.
One criticism of risk prediction models for PSCI 

including in the context of stroke is knowing what can 
be done to lower one’s risk. 72 Including modifiable risk 
factors such as diabetes, atrial fibrillation and prevent-
ing recurrent stroke, all factors known to increase risk 
of PSCI, should be at the forefront of any interventions 
as well as being used in model development. Although 
many high value risk factors (such as baseline cognition 
and education) may not be modifiable, strong predictive 
models can help ensure early identification, psycho-
education, monitoring and management of patients, 
expanding upon the existing narrow focus on medica-
tion management and secondary prevention in long 
term stroke care. 73 Primary care is often responsible for 
managing these conditions. Use of features that can be 
accessed and analysed by primary care services would 
provide the greatest potential for intervention. Only one 
study utilised primary care clinical records to develop a 
model for PSCI or dementia with moderate levels of 
accuracy (Full model: C-statistic 0.75 (95% CI: 0.73– 
0.78). 33 However, besides age, the remaining features 
are not known to be clearly associated with PSCI and 
post-stroke dementia. Future studies could look to uti-
lise evidence-based risk factors for PSCI and dementia 
to develop models in large volume primary care 
datasets.
Development of all risk models has tended to be in 

relatively small cohorts. Although cohort sizes have 
increased since the first review, across both reviews, 
most studies had less than a thousand stroke-survivors 
in their development cohort. When developing a pre-
diction model, the sample size depends on the disease 
prevalence in the study population, candidate predictor 
parameters, and desired percentage of variation in 
outcome values explained by the model (commonly 
reported by R-squared). The models included in this 
review often lacked formal methodological approaches 
to determine sample size criteria and did not adhere to 
good practice. 74,75 This is particularly important when 
considering how many variables should be included in 
the overall prediction model. Events per variable (EPV)

have previously been used to address this but simula-
tion studies have shown that EPV rules for binary 
logistic regression is weak 76 and large sample sizes are 
needed when using machine learning methods. 77 

Future studies should consider parameters such as 
the number of predictors, total sample size and events 
fraction as criteria in the development of their model. 76 

To address the issue around small cohorts, there have 
been some efforts to try and harmonise stroke cohorts. 
For example, one study harmonised three stroke co-
horts as part of the STROKOG consortium. 34 A similar 
approach has been used to externally validate simple 
dementia risk models previously. 67 However, given that 
these are small cohorts model development will often 
be restricted by common features across all cohorts. 
The model that harmonised these three cohorts had 
only 327 participants. Large datasets, in the form of 
electronic healthcare records are likely to be needed to 
take the next step in the field of PSCI and dementia risk 
prediction alongside explainable modelling techniques 
to find non-linear relationships between features and 
unravel the complexities between these relationships. 
This will be particularly important when we begin to 
consider non-traditional risk factors as there is evidence 
to suggest that higher order factors such as emotional 
distress and subjective health are more important than 
defined clinical factors when evaluated together. 78 This 
is likely because such higher-order factors reflect the 
complex interactions between functional, social, mental 
and biological aspects of the individual. 78 Another 
aspect that needs considering in model development is 
how the primary study addressed missing data. We did 
not formally assess how included papers treated 
missing data in their models. However, we noted that 
this aspect was poorly reported and where an approach 
was described there was substantial heterogeneity in 
the method used. In studies of populations with stroke 
and cognitive issues, the missing data is likely to relate 
to the exposure and the outcome, and so missing data 
are an important threat to the validity of the results. 
Finally, methodologically few of the models developed 
actually followed best practice in terms of both model 
development 63 and validation. 79 Although all studies 
included had measures of discrimination, few had 
other robust measures of model assessment including 
calibration and decision curve analysis 80 which may 
limit the current models’ clinical utility.
The strengths of this study include the inclusive 

search strategy to capture all available models, regard-
less of language and alignment with our previous re-
view criteria, to enable model comparison from both 
reviews. Studies that included pre-morbid cognitive 
impairment and those that did not specify whether the 
population included those with baseline cognitive 
impairment or dementia were excluded to ensure ho-
mogeneity in our final selection of studies. Although 
there will be stroke patients who have pre-existing
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cognitive impairment prior to their stroke, the models 
presented in this and the previous review reflect a 
proportion of the stroke population where there is no 
cognitive impairment at baseline. We do appreciate that 
the findings here may not be directly applicable to those 
with pre-existing cognitive impairment at baseline and 
future studies should look to synthesise these findings. 
The previous review did include a study that predicted 
“no cognitive impairment”. We have included this 
study in this review given that it met the original in-
clusion criteria, but we did not include studies that 
predicted non-cognitive impaired outcomes or recovery. 
Furthermore, we kept the delirium models separate 
from the PSCI and post-stroke dementia studies as the 
delirium models did not exclude cognitive impairment 
at baseline, in line with the previous review. We also 
performed an updated search (Supplementary 
Table S4) which further highlights the rapid develop-
ment of such models but in general reflects the ongoing 
methodological limitations encountered by the models 
included in the formal analysis. We do recognise some 
limitations. The findings were limited by geographical 
imbalance and related differences in population de-
mographics, lack of external validation, and methodo-
logical heterogeneity between included studies. 
Further, our search only included published studies 
and grey literature was not included. While dementia 
risk models for the general population are predomi-
nantly developed in high-income settings, most of the 
models developed for cognitive syndromes in our re-
view originated from upper-middle-income China, with 
additional contributions from other Asian countries, 
such as Thailand and South Korea. Few models were 
developed in high-income settings such as the US, UK 
and Germany. This could potentially restrict the gen-
eralisability of our findings outside of Asia, particularly 
as the risk profile for certain comorbidities associated 
with post-stroke cognitive decline may differ between 
Asian and non-Asian ethnicities. Methodologically, very 
few studies were externally validated in populations 
separate to the derivation cohort which limits our un-
derstanding as to how transportable these models are in 
other settings and particularly how accurate they are in 
other non-Asian populations. Further, although we did 
exclude those with pre-stroke cognitive impairment and 
dementia so that we could compare across both reviews, 
we do recognise the frequency of pre-stroke cognitive 
impairment. It may also be helpful to find ways to 
determine which patients with pre-stroke cognitive 
impairment go on to develop dementia. This is because 
pre-stroke cognitive impairment is both a major risk 
factor for post-stroke cognitive impairment and is 
frequently found prior to the index stroke event. How-
ever, pre-stroke cognitive assessment is difficult due to 
imprecise assessment tools and screening is unfortu-
nately rarely performed in clinical practice. Although it 
is likely that there may be those with undetected pre-

stroke cognitive impairment in clinical settings, the 
intention of this study was to synthesise existing clinical 
prediction scores where symptomatic dementia/cogni-
tive impairment was already present at baseline. 
Finally, we could not account for all methodological 
difference between all the included studies, specifically 
in how PSCI and dementia were diagnosed across 
studies and researcher settings.
An accurate, cost-effective and clinical useable 

model is key if we are to identify those stroke patients at 
the greatest risk of cognitive decline. This will not only 
have an impact on risk reduction strategies being 
developed and implemented, but this could also 
potentially reduce the overall numbers of stroke pa-
tients with cognitive decline which has significant 
healthcare, economic and societal cost implications. 
Despite the significant increase in model development, 
overall certainty of evidence is low and external valida-
tion to assess model transportability is unfortunately 
still lacking. This is particularly important for models 
where machine learning approaches are used. There is 
a risk of overfitting if external validation is not a routine 
part of model development. Further, few models fol-
lowed best practice guidance for model development 63 

and validation 79 which is recommended to ensure 
clinical utility. The predominance of models being 
developed in Asia without external validation in other 
populations limits any current recommendations of any 
model for clinical usage. Future research needs to uti-
lise large datasets which capture a diverse population 
such as primary care records and focus on all aspects of 
model development from discrimination and calibra-
tion to full external validation. Upon model develop-
ment, it is essential that cost effectiveness is assessed. 
Model developed should also involve key stakeholders 
to further test and evaluate implementing models into 
clinical practice.
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