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Summary eClinicalMedicine

Background Survivors of stroke are at a higher risk of cognitive syndromes, including dementia and delirium. Timely 2025;90: 103664

identification of those at-risk for cognitive syndromes could ensure better clinical management and implementation Z“b"s"‘:)d Online 25
. . . . . . . 202

of risk reduction strategies. This study updates and appraises current evidence on prognostic accuracy of | >

. . s https://doi.org/10.
multicomponent risk models for post-stroke cognitive syndromes. 101106 /J.Aedmmg_z 025,

103664

Methods In this updated systematic review, we searched multidisciplinary electronic databases between November
2019 and October 2024 for relevant studies. An updated search was conducted on May 30, 2025. Studies were
included if they described a multicomponent risk prediction tool developed in a stroke population (aged >18 years),
free of cognitive impairment/dementia at baseline, with no exclusions on language. All study designs of primary
research were eligible provided the study reported a multicomponent model at any point to predict participant
cognitive outcomes i.e., incident cognitive impairment, dementia or delirium. Multicomponent refers to having
more than one feature in the model e.g. if the study only reported the discriminatory accuracy of a cognitive
score this was not eligible. All studies had to report sufficient discriminative performance metrics to assess model
performance. Data were extracted from selected studies using a pre-specified proforma. Risk of bias was assessed
using the Prediction model Risk of Bias Assessment Tool (PROBAST), certainty of evidence by GRADE, and
between-study heterogeneity via I-squared () statistics. Our study was preregistered with PROSPERO
(CRD42024601845).

Findings From 16,259 articles, 20 new studies contributed 31 models for post-stroke cognitive impairment and/or
dementia and six models for post-stroke delirium with most developed in Asia (n = 12). Most models (n = 10)
used logistic regression, with some using machine learning methods (n = 5). Development cohorts were small
(mean n = 677). The pooled c-statistic for post-stroke cognitive impairment and delirium were 0.81 (95% CI
0.77-0.85, I? 95.7%) and 0.85 (95% CI 0.77-0.93, I’ 52.7%), respectively. Three models externally validated (C-
statistic: 0.72-0.91); and two models underwent temporal validation (AUC 0.81-0.82). Eight studies included
measures of calibration which all demonstrated good calibration. Most studies (n = 17) were deemed to have low
risk of bias and applicability concerns but overall certainty of evidence by GRADE was low.

Interpretation Development of risk models to predict cognitive syndromes post-stroke has increased. Development
cohorts remain small, largely developed in Asia with very few assessing model transportability. Future studies
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should pool data and utilise the potential of routinely collected large datasets. Stakeholder engagement and cost-
effectiveness of risk-stratified interventions are needed prior to clinical implementation.
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Research in context

Evidence before this study

International guidelines recommend the development of
robust methods to identify future dementia risk so that they
can be stratified to future interventions. Since the first review
of multicomponent risk prediction scores (n = 11) to predict
cognitive syndromes in stroke was published in 2021, there
has been significant momentum and research in this field,
particularly in Asia. Systematic reviews that coherently bring
together and appraise the evidence in this field are difficult
due to the heterogeneity across studies. In this systematic
review, we update the evidence base and bring uniformity to
this field.

Added value of this study

In this updated systematic review, we searched
multidisciplinary electronic databases between November
2019 to October 2024 for relevant studies, with a search
update on May 30, 2025. 20 new studies contributed 31
models for post-stroke cognitive impairment and dementia
plus six models for post-stroke delirium, with more advanced
modelling techniques beyond traditional Cox or Logistic
regression modelling being employed, such as machine
learning. While models incorporate evidenced-based features
such as age, education, stroke severity, diabetes and white
matter hyperintensities, many include numerous risk factors
that have not been proven to have prognostic utility in other
studies. Despite recommendations from the previous review
to use best practice guidelines to develop the models, very

Introduction
Stroke-survivors frequently report multiple clinical and
social needs which often remain unmet long after their
stroke.' These unmet needs include less visible deficits
in areas such as cognition, fatigue and emotional
wellbeing.! Until cognitive deficits are identified, gaps
in patient care and post-stroke sequelae will continue to
impact patients and their families’ due to the associa-
tions between general cognitive impairment and activ-
ity limitations and participation restrictions.’
Post-stroke cognitive impairment (PSCI) is common
in the first-year post-stroke** with domain-specific im-
pairments in memory, attention and executive function
being most severely and often affected.” Incidence of
dementia is nearly 50 times higher than the general

few assessed transportability through external (n = 3) or
temporal (n = 2) validation and the datasets used were
generally small (mean, n = 677), with the predominance of
Asian developed models reducing generalisability to other
settings. Overall certainty of the evidence was also low as
assessed by GRADE.

Implications of all the available evidence

Our findings show that no current models to predict
cognitive syndromes post-stroke can be recommended for
clinical use due to developmental limitations, particularly the
lack of external validation, small sample sizes and lack of
certainty of the current evidence base. Whilst more advanced
statistical methods are being employed, tools must be
clinically interpretable and utilise features that are evidence-
based for post-stroke cognitive syndromes. Harmonising
cohorts or utilising electronic health records, alongside
innovative methods to identify risk factors, could advance
this field by revealing non-traditional relationships and
enhancing the understanding of the complex interplay
between known and not yet known risk factors for post-
stroke cognitive difficulties. There is still a substantial gap
between development of risk models and subsequent clinical
implementation which needs to be addressed. Future
research needs to consider the cost-effectiveness of models,
intervention development to reduce risk and key stakeholder
engagement prior to their adoption.

population in the year following a major stroke.®
Although there are often improvements in domain-
specific cognitive deficits in the first months® and
long term after stroke, global cognitive decline is
common in the first year and beyond.* Approximately 4
in 10 stroke survivors will have PSCI (no dementia),"
and 1 in 10 stroke-survivors develop dementia soon
after their first stroke.”” PSCI can also persist in the
long term,"” even in those strokes considered to be
“minor”."* PSCI is also associated with the long term
risks of mortality and recurrent stroke' as well as de-
pendency, depression and care-home admission.”® In
addition, delirium is also common post-stroke and an
under-recognised contributor to cognitive impairment
in older adults.” As an independent risk factor for
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dementia, preventing or minimising delirium could
mitigate long-term cognitive decline.”® Early identifica-
tion of individuals at risk of post-stroke cognitive syn-
dromes could facilitate timely support for stroke-
survivors, families, and caregivers. Additionally, recog-
nising at-risk groups could enable stratification for
targeted, risk-reduction interventions, which is recom-
mended in international guidance.”

A previous review in 2019 identified 11 prognostic
models, seven for PSCI and four for delirium.”” Rec-
ommendations on their use was limited by high risk of
bias and lack of evidence for transportability e.g.
external validation.® Recent attempts to update the
literature have either included models that used ma-
chine learning” or did not exclude studies where
stroke-survivors may have had cognitive impairment at
baseline.” Exclusion of baseline cognitive impairment
and dementia prior to a stroke is key to ensuring model
comparability and reducing bias. Since 2019, there have
been significant methodological advances to prediction
model development as well as a substantial increase in
the models being developed particularly in the general
population for dementia prediction.”” With the
increased emphasis on identifying those at-risk with
risk reduction strategies being advocated for dementia
as a whole, it is important that a synthesis of the liter-
ature is conducted in the context of stroke.

We aimed to update the original systematic review” to
identify, describe and appraise contemporary literature
and the certainty of current evidence on prediction models
for PSCI and post-stroke delirium. This review will bring
together the findings of the original systematic review to
provide a comprehensive overview of the features used in
these models and the current state of the evidence.

Methods

Study design and ethics

An updated systematic review was conducted and re-
ported in alignment with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines.”* Given this is a systematic review and meta-
analysis, no ethical approval or informed consent was
required for this work.

Search strategy and selection criteria

An information specialist (LE) ran the search. Title and
abstract screening were performed on Rayyan by at
least 2 authors (RDI, SS, FM, EJ). Full text review was
conducted using Covidence systematic review software
Dby at least 2 authors (RDI, SS, FM, EJ, JD, CB, LG, JB).
The review was registered with PROSPERO (ID:
CRD42024601845).”

The following databases were searched: MEDLINE
(Ovid), EMBASE (Ovid), PsycINFO (Ovid), CINAHL
(EBSCO) and The Cochrane Library. See Supplementary
Material for the search terms used. The previous review
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had completed their search up to Nov 13, 2019. In this
update we conducted a search from the last search
month (November 2019) to Oct 15, 2024 to ensure no
relevant studies were omitted. For all databases, the
search terms included those relevant to stroke, cognition
and prognosis. An updated search was conducted on the
May 30, 2025.

Studies were eligible if they included a) participants
who were aged 18 or over, b) people with a clinical
diagnosis of stroke and c) undertook assessments of
cognitive status for PSCI, post-stroke dementia or post-
stroke delirium in people free of dementia/cognitive
impairment at baseline pre-stroke. There was no re-
striction on length of follow-up interval and cognitive
recovery studies were excluded. Studies that included
pre-morbid cognitive impairment and those that did not
specify whether the population included those with
baseline cognitive impairment or dementia were
excluded to ensure homogeneity in our final selection
of studies. All study designs of primary research were
eligible provided the study reported a multicomponent
model at any point to predict participant cognitive
outcomes i.e., incident cognitive impairment, dementia
or delirium. Multicomponent refers to having more
than one feature in the model e.g. if the study only
reported the discriminatory accuracy of a cognitive
score this was not eligible. All studies had to report
sufficient discriminative performance metrics to assess
model performance. We excluded studies that a)
involved participants who had subarachnoid haemor-
rhage; b) predicted performance on a single cognitive
domain only (e.g. language); and c) did not have results
available in a full published paper in a peer-reviewed
journal e.g. conference abstracts. No restrictions were
placed on study setting, length of time from index
stroke to follow-up or language.

Data extraction, quality assessment and certainty
of evidence

One author (EYHT) used a pre-specified proforma to
extract data from the included studies which was veri-
fied by another author (JB). This included information
on: study setting and design, sample characteristics,
predictors/features and outcome variables, methods of
model derivation, validation and measures of prediction
rule performance including discrimination and cali-
bration. Validation was further grouped by the type of
validation performed e.g. internal, external or temporal
validation” where temporal validation uses the same
study setting but participants sampled at a different
time point. Risk of bias was assessed by the Prediction
model Risk of Bias Assessment Tool (PROBAST).” The
tool consists of four domains: participants, predictors,
outcome and analysis. Each domain is appraised sepa-
rately and then considered together to make an overall
judgement on risk of bias. Further, three study do-
mains: participants, predictors and outcome are rated
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on applicability i.e., the relevance to the populations
and settings that the study targets.

We also used GRADE (Grading of Recommenda-
tions, Assessment, Development, and Evaluations) (TQ)
to evaluate the certainty of the overall body of evidence
across both reviews. We appraised the limitations due
to risk of bias, inconsistency, imprecision, indirectness
and publication bias.

Assessment of features

To harmonise all known risk variables in all risk pre-
diction models for PSCI and post-stroke delirium, we
ensured this current update followed the same frame-
work and guidance as the original review.* We then
categorised the known features across all models to
provide an overview and appraise the features that are
currently being used in this field.

Post-Hoc data synthesis
Results were narratively summarised using descriptive
measures such as frequencies and percentages for cat-
egorical variables and mean and SD (or median and
interquartile range [IQR]) for continuous variables.
The retrieved discrimination measure (i.e., c-index,
or area under the receiver operating characteristics
[ROC] curve, AUROC) for a developed model was
summarised into a weighted average. For each study,
we identified the main or recommended model, and
average estimate if multiple models are fitted without
any preferred model. For any c-statistic, if 95% confi-
dence interval (CI) was not reported then we estimated
it using the observed events and sample size as sug-
gested by Debray et al.” In meta-analysis, we separately
pooled reported c-indices from prediction models when
developed for post-stroke cognitive impairment
including dementia, or delirium. We used random-
effects model with restricted maximum likelihood
(REML) estimation for pooled estimate, and the
Hartung-Knapp-Sidik-Jonkman (HKSJ) method to
calculate its 95% Cls.*” The proportion of variability in
c-indices due to the between-study heterogeneity was
summarised using I-squared (I?) statistics (I < 25% for
low, I? < 50% for moderate, I > 50% for substantial).*
Further, a 95% prediction interval for the random-
effects model was also reported to understand the
possible range of c-statistic if a new model is fitted.”
Publication bias was assessed by funnel plot (if there
are at least 10 studies for a given outcome), and its
asymmetry was tested by Egger’s linear regression
method (p < 0.1 was considered significant). A sub-
group analysis for choice of modelling approach
(regressed-based versus machine learning) was also
conducted to understand heterogeneity across c-indices.
We further used univariate meta-regression to explore
potential variation due to the age of participants, study
sample size, follow-up time, and number of observed
events using the random-effects model with REML

estimation. All statistical analyses were performed us-
ing Stata v19.5 (StataCorp, College Station, Texas, USA)
using “metan” package and “meta regress” command.

Role of the funding source

The funders had no involvement in study design, data
collection, data analyses, data interpretation, or the
writing of the report.

Results

Summary of included studies

From 16,259 articles of the original search, 20 studies
met the inclusion criteria, of which 17 studies (n = 31
models with unique features) were for PSCI*** and
three studies (n = 6 models with unique features) for
post-stroke delirium were identified”' (Fig. 1). The
updated search, performed on the 30th May 2025 yiel-
ded a further 12 studies that were eligible for inclusion.
These are reported separately (Supplementary Table S4)
and were not included in the analysis. The majority of
models were developed in Asia (n = 12) (China
(n = 9),»#04# Thailand (n = 1), South Korea
(n = 1)* and Taiwan (n = 1). One study harmonised
cohorts from France, Germany, Australia and the
United Kingdom.** The sample size for PSCI ranged
from 104* to 3741* with a sample size range for post-
stroke delirium between 102°°-514* (mean for devel-
opment cohorts across both, n = 677). The proportion of
the cohort which developed PSCI/dementia ranged
from 10%* to 64%.* The proportion of outcomes
ranged from 29%°' to 50%* for delirium. Charac-
teristics of the included studies are described in
Table 1.

Prediction scores for post-stroke cognitive
impairment including dementia

Most studies (n = 15) focused on prediction of cognitive
impairment,****¥-* with one study predicting PSCI or
dementia® and another predicting vascular dementia.”
All 17 studies included a statement regarding excluding
dementia or cognitive impairment at baseline either
from the paper itself or in reference to the original
cohort used. From the 17, 5 studies mentioned specific
assessment as to how they excluded pre-morbid cogni-
tive impairment including the use of Diagnostic and
Statistical Manual of Mental Disorders IV criteria,*>*
Informant Questionnaire on Cognitive Decline in the
Elderly (IQCODE).”*** For example, Huang et al. states
that the IQCODE was used to rule out other con-
founding factors such as pre-stroke cognitive function.*
In total there were 31 new models which used unique
features rather than assessing the same features with
different statistical analysis. All studies explicitly stated
that individuals with pre-existing cognitive impairment
and/or dementia were excluded. The main statistical
methodology  used  was  logistic  regression

www.thelancet.com Vol 90 December, 2025


http://www.thelancet.com

Articles

[ Previous studies ] [

Identification of new studies via databases and registers

Records removed before
screening:
Duplicate records removed (n
= 3439)

)
- Records identified from:
:g Studies included in the Datab::‘iz(sz ?n152151%)42)
& previous review (n =10) MEDLINE (n = 2648)
T CINAHL (n = 1066)
S PsycINFO (n = 703)
—/
—

Records screened
(n =12,820)

Records excluded**
(n=12,613)

A4

(n = 207)

Reports sought for retrieval

Reports not retrieved
(n=3)

Screening

A4

(n = 204)

Reports assessed for eligibility

Reports excluded:
Wrong Outcome (n=51)

Abstract/Conference (n=35)
Did not exclude dementia or
cognitive impairment at

— baseline (n=23)
) Wrong Study Type (n=21)
Wrong Intervention (n=14)
New studies included in review Wrong Population (n=15)
(n=20) Single Component model
(n=12)
= Not Primary Research (n=11)
3 Papers in original review
3 (n=2)
=
Total studies included in review
——— | (n=30)
—
Fig. 1: PRISMA 2020 flow diagram for updated systematic reviews.
(n = 10), #0454 followed by machine learning  medical history (n = 15).3%2%25-373-#340-485355 Eor medical

(n = 5)***4% and then Cox regression (n = 2).**
Numbers of variables ranged from two** (where
the prognostic nutritional index utilises 2 blood marker
features) to 30" (Table 2). Across both reviews, de-
mographic information such as age and education were
the most commonly used variables (n = 22).2#%55¢
Health factors were the least featured category with
five models including smoking status,””*"* alcohol
consumption” and transfer from hospital to a facility.”
The previous review did not identify any models which
used health factors. The next two most common categories
for feamres were imaging (n = 17) 32,34,36-38,40,41,43-47,52-54,56,57 and
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history, the two most common comorbidities included
in the studies were diabetes (n = 8)*77***=# and
previous stroke or TIA (n = 8).72074142404755 Compared
to the previous review where no models used any lab-
oratory markers. In this update, seven studies included
laboratory (including genetic’’) markers in their
models.»#>273841424547 These markers included both
single value markers (e.g. fasting blood sugar,"
APOEe4* and HDbA1c*) and specific scores utilising
blood markers such as the prognostic nutritional in-
dex,” the systemic inflammatory response index* and
the systemic immune inflammation index.” Across
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Study

Country

Setting

Design

Stroke type

Development sample size, N

Mean age

Post-stroke cognitive impairment

Cox regression
Ashburner 2024

Molad 2019*

Logistic regression
Chu 2023%

Dharmasaroja 2022°°

Georgakis 2023’

Gong 2021°°
Huang 2022

Lee 2023*

Ma 2022

Pan 2023*

Wang 2024%
Zhao 2024"

Machine learning
Aamodt 2021°

Betrouni 2022°*

Hasan 2024%°

us

Israel

China

Thailand

Germany

China
China

South Korea

China

China

China

China

Norway

Harmonised cohorts—

STROKOG (France, Germany,
Australia, United Kingdom)

Taiwan

Primary Care Practice-Based
Research Network at
Massachusetts General Hospital
Department of Emergency
Medicine at Tel-Aviv Medical
Centre; Tel-Aviv Brain Acute
Stroke Cohort (TABASCO)

Minhang Hospital of Fudan
University

Thammasat University Hospital

Multicentre hospital-based cohort
study across 7 tertiary stroke
centres

Stroke centre

Second Affiliated Hospital of
Guangzhou Medical University and
the Second People’s Hospital of
Foshan

Tertiary academic hospital

Department of Neurology

Tongji Hospital, Wuhan First
Hospital, and Wuhan Central
Hospital in Wuhan City, Hubei
Province

Neurology Department (Forst
Hospital of Jilin University)
First Hospital of Jilin University

Five Norwegian hospitals (Nor-
COAST)

STROKDEM, DEDEMAS, Sydney
Stroke Study, STRATEGIC

Taipei Medical University: Taipei
Medical University Hospital
(TMUH), Wanfang Hospitals, and
Shuang-Ho Hospital.

Retrospective
cohort

Prospective cohort

Prospective cohort

Prospective cohort

Prospective cohort

Prospective cohort
Prospective cohort

Retrospective
cohort

Prospective cohort

Prospective cohort

Prospective cohort

Prospective cohort

Prospective cohort

Prospective cohort

Retrospective
cohort

Ischaemic stroke

Mild/moderate first acute
ischemic stroke or transient
ischemic attack

Acute ischaemic stroke

Ischaemic stroke

Acute stroke

Acute ischaemic stroke
Ischaemic stroke

Acute ischaemic stroke

Acute ischaemic stroke in
diabetics

Acute ischaemic stroke

Acute mild ischemic stroke

Acute minor ischemic stroke
and TIA

Acute ischaemic or haemorrhagic
stroke

Acute stroke

Stroke

3741

397

1342

177

666 in total sample

228
368

951

161

676

285

224

203

327

2234 (n = 1787 for
training and 447 for
testing)

71.4 years (SD: 11.8)

66.9 + 9.7 years

68 years

Non-dementia mean age
61.7 years, vascular dementia
mean age 74.5 years

67.9 years

62.16 years
71

65.7 + 11.9 years

No overall cohort data

No cognitive impairment:
65 years

Mild cognitive impairment:
68 years

Severe cognitive impairment:
74 years

60 years

62.3 years

61 years

Not specifically stated for this
subgroup but overall cohort was
71.7 years

STROKDEM 64.09

DEDMAS 70.25

Sydney Stroke Study 72.01
STRATEGIC 69.47

Shuang-Ho = 65.88

TMUH = 68.77

Wangfang = 69.23

(Table 1 continues on next page)
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Intracerebral haemorrhage

study carried out in the

Department of Neurology,

University Hospital, Krakow,

Poland

Table 1: Characteristics of included studies.
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both reviews there were a total of 101 unique variables
with imaging variables being the most frequently re-
ported (demographics = 5, medical history = 31,
symptom severity = 2, stroke type = 4, imaging = 34,
laboratory markers = 13, baseline function = 9, health
factors = 3) (Supplementary Table S1). Further across
both reviews, the most common variables were age
(n = 18) and education (n = 16) followed by stroke
severity measured by the National Institutes of Health
Stroke Scale score (n =9) and variables associated with
White Matter Hyperintensities (n = 9) (Fig. 2) (Table 3).

The discriminative accuracy of the models ranged
from poor (Cox regression; AUC of 0.58*) to excellent
(Logistic regression; AUC 0.97*). Three models were
externally validated in a separate population from the
derivation cohort (C-statistic: 0.72 (0.68-0.77)-0.91 (no
95% CI reported)**** with one model undergoing
temporal validation (AUC 0.81).” From the seventeen
studies, seven studies underwent assessment for cali-
bration with all models showing good calibration.*~*

Prediction scores for post-stroke delirium

Similar to the previous review, the three new studies
with models designed to predict post-stroke delirium
between 72 h*' and 7 days®* did not exclude dementia
or cognitive impairment at baseline. The number of
features ranged from 2°' to 7.* Across both reviews, all
six studies* "' used demographic features (such as
age) with symptom severity (measured by the National
Institutes of Health Stroke Scale) being used in 4 of the
studies**¢! (Supplementary Table S2). Like models for
PSCI and dementia, the laboratory markers were infec-
tion or inflammatory markers.**"*° Across both reviews
there are 27 unique variables (demographics (n = 1),
medical history (n = 5), symptom severity (n = 1), stroke
type (n = 3), imaging (n = 2), acute medical complica-
tions (n = 6), laboratory markers (n = 7), Baseline
Function (n = 2)). There were three studies capturing six
new models for post-stroke delirium. All models were
developed with logistic regression with moderate (AUC
0.77 (95% CI 0.71-0.81)" to high levels (AUC 0.9 (no
95% CI reported))™ of discriminative accuracy. One of
the models did perform temporal validation® but none
performed external validation. Two of the models from
one study reported good calibration.”

Meta-analysis of model performance

Fig. 3 summarises the meta-analysis of model perfor-
mance for post-stroke cognitive impairment (17
studies) and delirium (3 studies) outcomes. The me-
dian c-statistic (or equivalent AUROC) for cognitive
impairment was 0.80 (IQR: 0.75, 0.97) and for delirium
was 0.84 (IQR: 0.83, 0.90). The pooled c-statistic for
post-stroke cognitive impairment and delirium were
0.81 (95% CI 0.77-0.85, I” 95.7%) and 0.85 (95% CI
0.77-0.93, I? 52.7%), respectively. For both outcomes,
95% prediction interval was wide indicating varied
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Study Features (n) Outcome Ascertainment of  Timepoint of Participants with Type of model Discrimination Calibration Validation
cognition outcome outcome, N (%)
assessment
Post-stroke cognitive impairment
Cox regression

Ashburner Full model: Age, Post-stroke ICD-9/10 codes 5 years 332 (11.4%) PSCI  Cox proportional Full model: C-statistic None Internal

2024% insurance, mobility cognitive hazards 0.750 (95% Cl: validation
problems, prior history  impairment or 0.726-0.775); Full (n = 1925 (166
of falls, delirium, dementia model minus insurance cases) C-statistic
peripheral vascular 0.749 (0.724-0.774) 0.731
disease, Parkinson's Full model without (0.694-0.768);
disease, depression, excluding patients with External
severe chronic kidney a prior history of stroke validation
disease, abnormal 0.750 (0.726-0.773) (n = 2237 (128
weight loss and cases) 0.724
anorexia, and discharge (0.681-0.766)
from the hospital to a
facility (n = 11)
Full model minus
insurance (n = 10)
Full model without
excluding patients with
a prior history of stroke
(n=11)

Molad 2019**  Vascular (Framingham  Mild cognitive MCI (Petersen 2 years 80 (20.2%)-9 Cox regression Vascular related None None
risk score for stroke impairment Criteria) developed measures, AUC: 0.67
(age, systolic blood Participants with dementia and 71 (0.56-0.78)

pressure,
antihypertensive
medication, diabetes,
cigarette smoking,
history of cardiovascular
disease, atrial
fibrillation), White
Matter Hyperintensity
Volume, lacunes, and
CMB) (n = 4)

AD associated markers
(APOE4 status and
hippocampal volume)
(n=2)

Logistic regression
Chu 2023% Systemic inflammatory
response index, diabetes

mellitus, gender,
admission NIHSS scores,
education and age
(n=6)

Post-stroke
cognitive
impairment

suspected cognitive
impairment were
referred to an
experienced
cognitive
neurologist.
Assessments were
further reviewed y a
consensus forum to
determine MCI
versus dementia
(assessor, three
senior neurologists
and a
neuropsychologist)

developed MCl

MMSE 2 weeks 690 (51.4%)

Logistic regression

AD related measures,
AUC: 0.58 (0.45-0.67)
AD and vascular related
measures AUC: 0.66
(0.55-0.77)

AUC: 0.716 1000 bootstrap None
resamples-good
agreement was
seen between the
predicted risk and
the observed risk
in the calibration
curves for this
model. The
Hosmer-
Lemeshow test

(p = 0.325) further
confirmed the
good calibration

(Table 2 continues on next page)
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Study Features (n) Outcome Ascertainment of  Timepoint of Participants with Type of model Discrimination Calibration Validation
cognition outcome outcome, N (%)
assessment
(Continued from previous page)
Dharmasaroja  Age, education, History  Vascular dementia  Clinical diagnosis of 6 months 48 (27.1%) Logistic regression  Cutoff point of >5, Calibration was None
2022%° of stroke, white matter vascular dementia AUC 0.76 (0.69-0.83)  examined by
hyperintense lesions was made by senior plotting predicted
(Fazekas scale), stroke neurologists at 6 probability of the
subtype (n = 5) (1) months after risk score against
the stroke based on the actual
NINDS-AIREN probability of the
criteria patients who
developed vascular
dementia at every
risk score point-the
risk score showed
good calibration
Georgakis Model 1 includes age, Cognitive A comprehensive 12 months Not specifically Logistic regression Model 1 AUC: 0.688 Overall calibration  None
2023% sex, education, vascular  impairment neuropsychological stated (0.628-0.748) of all models was

risk factors (history of
hypertension, diabetes,
atrial fibrillation, prior
stroke, current smoking,
alcohol consumption,
body mass index,
circulating low-density
lipoprotein cholesterol
[LDL-C] levels), National
Institutes of Health
Stroke Scale (NIHSS) and
Montreal Cognitive
Assessment (MoCA) in
the acute phase, pre-
stroke mRS, and
normalised stroke lesion
volume (stroke lesion
volume/total intracranial
volume) n = 8)

Model 2 includes the
global SVD score
(lacunes, white matter
hyperintensities, cerebral
microbleeds and
enlarged perivascular
spaces) + model 1
features (n = 9)

Model 3 includes
individual SVD markers
(lacune count, deep and
periventricular white
matter hyperintensity
(WMH) Fazekas grades,
cerebral microbleed
counts, and grade of
perivascular

spaces) + model 1
(n=12)

battery of tests was
performed and
classified in five
domains (executive
function, memory,
language, attention,
and visuospatial
function)

Model 2 AUC: 0.701
(0.642-0.760)
Model 3 AUC: 0.722
(0.664-0.779)

good (all Hosmer
Lemeshow-
derived goodness-
of-fit P > 0.05)

(Table 2 continues on next page)
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Study

Features (n)

Outcome

Ascertainment of
cognition

Timepoint of
outcome
assessment

Participants with Type of model
outcome, N (%)

Discrimination

Calibration Validation

(Continued from previous page)

Gong 2021°°

Huang 2022

Age, female, Fazekas
Score, Educational level,
number of intracranial
atherosclerotic stenosis,
HbA1c and cortical
infarction (n = 7)

Pre-stroke cognitive
function, age, years of
education, NIHSS at
admission, history of
ischaemic heart disease,
number of chronic
lacunar infarcts, medial
temporal atrophy score

(n=6)

Post-stroke
cognitive
impairment

Cognitive
dysfunction

MoCA

MMSE

6-12 months

Not stated

122 (53.5%) Logistic regression

with nomogram

191 (51.9%)

Logistic regression

AUC 0.810

Training

C-index 0.846
(0.807-0.885)
Validation n = 367
(196 (53.4%) cases) C-
index: 0.845
(0.805-0.885)

Calibration of the  Temporal
risk prediction validation: Same
model was centre but
assessed in the different timepoint
development n =66, AUC 0.812
cohort by the plot

comparing the

observed

probability of PSCI

according to the

total score of the

nomogram

against the

predicted

probability based

on the nomogram

and by using the

Hosmer-

Lemeshow test

that assesses

whether or not

the observed

event rates

matched the

expected rates in

patients with

minor stroke. The

calibration curve

of the nomogram

for the predicted

probability of PSCI

in patients with

minor stroke

demonstrated

good agreement

in this cohort]

Bootstrap None
calibration plot-
good agreement
between the
nomogram'’s
predictions and
the actual
observed cognitive
impairment,
indicating high
predictive accuracy
(mean absolute
error = 0.021)

(Table 2 continues on next page)
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Study Features (n) Outcome Ascertainment of  Timepoint of Participants with Type of model Discrimination Calibration Validation
cognition outcome outcome, N (%)
assessment
(Continued from previous page)

Lee 2023* Age, Sex, Body mass Post-stroke Korean Version of ~ 3-6 months 290 (30.5%) Logistic regression  K-VCIHS-NP AUCs None None
index, Education years,  cognitive the Vascular Support vector XGB: 0.7919
Previous modified impairment Cognitive machine (SVM) (0.6839-0.8866)
Rankin Scale, History of Impairment Extreme Gradient ~ ANN: 0.7365
hypertension, History of Harmonisation Boosting (XGB) (0.6202-0.8438)
diabetes mellitus Standards- Artificial Neural SVM: 0.7157
History of Neuropsychological Network (ANN) (0.5914-0.8271)
hyperlipidemia, History Protocol (K-VCIHS- Logistic Regression:
of coronary heart NP) 0.7121 (0.5914-0.8265)
disease, History of K-MMSE MMSE-z AUCs
stroke or TIA MMSE-z XGB: 0.7876
History of atrial (0.6711-0.8892)
fibrillation, Smoking ANN: 0.7339
status, Discharge, (0.6018-0.8525)
NIHSS, TOAST SVM: 0.7463
classification. Multiple (0.6191-0.8566)
lesions Logistic Regression:
Left sided lesions 0.7608
Stroke volume (mm3) (0.6434-0.8663)
Presence of cortical MMSE AUCs
lesion SVM: 0.8751
Presence of subcortical (0.7838-0.9472)
lesion ANN: 0.8741
Presence of (0.8165-0.9241)
infratentorial lesion Logistic regression:
Presence of strategic 0.8713
lesion (0.7831-0.9414)
Modified Fazekas score XGB: 0.8616
Any chronic microbleeds (0.7683-0.9389)
Total mesial temporal
lobe atrophy
Fasting blood glucose
Creatinine
Total cholesterol
Hemoglobin
Systolic blood pressure,
short geriatric
depression scale (SGDS)

(n =30)
Ma 2022 Sex, age, education Post-stroke MoCA Not stated 94 (58.39%) Logistic regression AUC = 0.966 None None

level, recurrent cerebral  cognitive
infarction, course of impairment
diabetes and serum

albumin (n = 6)

(Table 2 continues on next page)
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Study Features (n) Outcome Ascertainment of  Timepoint of Participants with Type of model Discrimination Calibration Validation
cognition outcome outcome, N (%)
assessment
(Continued from previous page)
Pan 2023* Models without Post-stroke MoCA 3 months 251 (37.1%) Logistic regression AUC None None
disconnection score cognitive Training (Reference
(reference models) impairment Model)
included 6 known Dataset 1: 0.738
predictors: age, sex, Dataset 2: 0.741
education level, baseline Dataset 3: 0.732
National Institutes of Training (Combined
Health Stroke Scale, Model)
lesion volume, and Dataset 1: 0.796
location impact score. Dataset 2: 0.781
(n=6) Dataset 3: 0.776
Combined model: AUC
Disconnection score Testing (Reference
(defined as the Model)
weighted sum of voxel Dataset 1: 0.700
intensities (Z score Dataset 2: 0.657
statistics) for VDSM- Dataset 3: 0.694
significant voxels that Testing (Combined
overlapped with the Model)
patient’s disconnection- Dataset 1: 0.740
severity map (voxel- Dataset 2: 0.710
wise disconnection Dataset 3: 0.755
severities as
weights) + Reference
model (n = 7)
Wang 2024%  Age, education, deep Post-stroke MMSE 6-12 months 121 (42.5%) Logistic regression  Age, education and None None

white matter
hyperintensity (DWMH)
(n=3)

Prognostic nutritional
index (PNI) (serum
albumin

(g/L) + 5 x lymphocyte
count) (n = 2)

PNI as continuous
variables co-

diagnoses + education,
stroke history and
DWMH (n = 5)

PNI as categorical
variable co-

diagnose + education,
stroke history, DWMH
(n=5)

cognitive

impairment

DWMH AUC = 73.7%;
PNI as continuous
variable AUC = 60.7
PNI as continuous
variables co-
diagnoses + education,
stroke history and DWM
AUC = 76.7%, PNI as
categorical variable co-
diagnose + education,
stroke history, DWMH
AUC 76.1

(Table 2 continues on next page)
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Study Features (n) Outcome Ascertainment of  Timepoint of Participants with Type of model Discrimination Calibration Validation
cognition outcome outcome, N (%)
assessment
(Continued from previous page)
Zhao 2024 Model 1: Sex, education Post-stroke MoCA 6-12 months 88 (39.3%) Logistic regression AUC None None
level, NIHSS score, cognitive Model 1: 0.765
hypertension, previous  impairment (0.702-0.827)
stroke, deep white Model 2: 0.804
matter hyperintensity (0.747-0.861)
score (n = 6) Model 3: 0.796
Model 2: Model 1+ (0.738-0.854)
neutrophil percentages Model 4: 0.78
(n=7) (0.719-0.841)
Model 3: Model 1+ Model 5: 0.803
lymphocyte percentages (0.745-0.86)
(n=7) Model 6: 0.799
Model 4: Model (0.741-0.858)
1 + neutrophil values
(n=7)
Model 5: Model
1 + neutrophil-to
lymphocyte ratio (n = 7)
Model 6: Model
1 + systemic immune
inflammation index
(n=7)
Machine learning
Aamodt Stroke volume, Post-stroke DSM-5 from 3 months 63 (27.8%) were  Support vector AUC 0.802 None None
2021* antiplatelets, occipital ~ cognitive neuropsychological categorised as machine
th. (left), stroke severity, impairment test scores and having mild NCD,
temporal th. (left), instrumental whereas 62
previous infarction, activities of daily (27.3%) had major
previous ICH, education living NCD
(years), cingulate (right)
(n=9
Betrouni Texture features Post-stroke Overall, cognitive 6-12 months STROKDEM 75 Random Forest AUC 0.90 + 0.03 None 0.77
2022% kurtosis and IDM from  cognitive function was (46.9%)
the entorhinal cortex, impairment assessed by DEDEMAS 11
and kurtosis and administering an (19.6%)

entropy from the
hippocampus, age, and
baseline MoCA score.
(n=4)

extensive battery of
neuropsychological
tests, classified into
5 cognitive domains
(memory, executive
function, attention,
language, and
visuospatial ability).

Sydney Stroke
Study 11 (16.2%)
STRATEGIC 13
(30.2%)

(Table 2 continues on next page)
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Study Features (n) Outcome Ascertainment of  Timepoint of Participants with Type of model Discrimination Calibration Validation
cognition outcome outcome, N (%)
assessment
(Continued from previous page)

Hasan 2024°°  Age, disease of the Post-stroke ICD-9-CM and Stroke index date 319 (9.9%) CatBoost Classifier, CatBoost model: Calibration plots  External
circulatory system, sex,  cognitive ICD-10 codes until September Extreme Gradient AUC = 0.93 demonstrated well Validation:
drugs related to acidity, ~impairment 30, 2017, or until Boosting, Light XGB Classifier: calibrated and Wanfang. Hospital
antithrombotics, drugs their last follow- Gradient Boosting AUC = 0.92 high performing ~ (n = 975),
related to functional up machine, Extra LGBM Classifier: prediction model  AUC = 0.91
gastrointestinal Tree Classifier, AUC = 0.92
disorders, hypnotic, Random Forest ExtraTrees Classifier:
systemic use of Classifier AUC = 0.91
antibacterials, NSAID, Random Forest
stomatological Classifier: AUC = 0.92
preparations,
ophthalmologicals, drugs
for constipation,
antidepressant,
analgesics, cough/cold
preparations, poorly ill-
defined conditions,
respiratory diseases,
diabetes drugs, diseases
of the nervous system,
antihemorrhagics
(n = 20)

Yuan 2021%°  Years of education, Post-stroke MMSE and MoCA  3-6 months 118 (31.3) LASSO and AUC: 0.8935 The consistency External
history of stroke, history cognitive Nomogram (0.823-0.910) test between the  Validation
of diabetes, left frontal  impairment predicted and 227 stroke patients
NAA/Cr, left thalamus actual values (75 PSCl and

NAA/Cr and left
hippocampus NAA/Cr
(n=6)

through the
calibration plot
showed that the
predicted
probability of the
nomogram for
PSCI correlates well
with the actual
diagnosis.

152 N-PSCl), who
were hospitalised
between May 2019
and September
2020 at the Third
Affiliated Hospital
of Jinzhou Medical
University (143)
and the Central
Hospital (84);

n = 75/227

AUC: 0.8523
(0.831-0.908)

(Table 2 continues on next page)
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Study Features (n)

Outcome

Ascertainment of
cognition

Type of model

(Continued from previous page)

Zhu 2020%° Baseline MoCA scores,
education, BMI and
baseline MMSE scores
(n=4)

Post-stroke delirium

Guldolf 2021%° NIHSS, age, neutrophil-
lymphocyte ratio,
premorbid mRS, history
of previous stroke,
premorbid cognitive
dysfunction and hearing
problems (n = 7)

Post-stroke
cognitive
impairment

Delirium

MMSE and MoCA

A comprehensive
neuropsychological
battery that
evaluated four
cognitive domains:
(1) language (Boston
Naming Test); (2)
visuoconstruction
(Clock Drawing Test;
(3) verbal memory
(Auditory Verbal
Learning Test; and (4)
executive function/
attention (Trail
Making Test.
Impairment was
defined by the
attainment of a result
that was 1.5 standard
deviations below the
standardised mean.
The diagnosis of PSCI
required deficits in at
least one domain, as
assessed by the
neuropsychological
battery.

DSM-5 Criteria

Timepoint of Participants with
outcome outcome, N (%)
assessment

3-6 months 66 (63.5%)

7 days 201 (39%)

Classification and
Regression Tree

Logistic regression

Discrimination Calibration Validation
AUC 82.3% None None
AUC None None

Age and NIHSS 0.82

(0.78-0.85)

NIHSS, age and
premorbid cognitive
dysfunction 0.82
(0.79-0.87)

NIHSS, age and NLR 0.83
(0.79-0.87)

Age, NIHSS, NLR and
premorbid cognitive
dysfunction 0.84
(0.81-0.88)
Dichotomised Models
Age >75 and NIHSS >7
076 (0.73-0.82)

NIHSS >7, age >75
years and premorbid
cognitive dysfunction
0.80 (0.76-0.84)

NIHSS >7, age >75 and
NLR >2.50 0.80
(0.76-0.84)

Age >75, NIHSS >7,
NLR >2.50 and
premorbid cognitive
dysfunction 0.82
(0.78-0.86)

(Table 2 continues on next page)
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Study Features (n) Outcome Ascertainment of  Timepoint of Participants with Type of model Discrimination Calibration Validation
cognition outcome outcome, N (%)
assessment
(Continued from previous page)

Haight 2020°° Age greater than 64 Delirium CAM-ICU 72 h 51 (50%) Logistic regression AUC 0.9 None Temporal
years, presence of validation: AUC
intraventricular 0.82 (n = 100)
haemorrhage (IVH),
intubation, presence of
acute kidney injury
(AKI), and stroke with
either cognitive deficit,
neglect, or aphasia
(n=5)

Klimiec-Moskal Model A: Age and stroke Delirium Brief Confusion 7 days 134 (29.2%) Logistic regression AUC Both models were None

2022 severity (NIHSS) (n = 2) Assessment Method Model A: 0.77 well-calibrated as
Model B: Age, stroke (bCAM) for verbal (0.71-0.81) assessed by the
severity (NIHSS) and C patients and the Model B: 0.80 Hosmer-Lemeshow
reactive protein (n = 3) Confusion (0.76-0.84) test (p = 0.532 for
Model C: stroke severity Assessment Method Model C: 0.81 Model A and
(NIHSS), atrial for the Intensive (0.77-0.85) p = 0.253 for
fibrillation, diabetes Care Unit (CAM- Model D: 0.84 Model B).
mellitus, pre-stroke ICU) for non-verbal (0.80-0.88)

dependency and
haemorrhagic stroke
(n=5)

Model D: stroke severity
(NIHSS), atrial
fibrillation, diabetes
mellitus, pre-stroke
dependency,
haemorrhagic stroke
and C reactive protein
(n=6)

patients

Table 2: Prognostic score features, outcomes and assessment.
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Fig. 2: Number of studies containing 3 or more features by category.

model performances are expected in a new study
(cognitive impairment: 0.66-1.00); and delirium:
0.56-1.00). In a subgroup analysis for post-stroke
cognitive  impairment outcome (Supplementary
Figure S1), pooled c-statistic was found to be lower
when models fitted using regression techniques (0.79,
95% CI 0.74-0.84, I’ 94.5%) compared to machine
learning methods (0.88, 95% CI 0.82-0.94, I 72.8%).
Potential extent of publication bias for the post-stroke
cognitive impairment outcome presented in the funnel
plot (Supplementary Figure S2) that indicates variation
across the funnel however small-study effect does not
show any statistical significance (p = 0.331). Therefore, it
should be interpreted with caution. In meta-regression
analysis, bubble plots show potential heterogeneity in
each moderating factor (i.e., age, sample size, number of
observed events, and follow-up time) however, none of

these  factors reached  statistical  significance
(Supplementary Table S3 and  Supplementary
Figure S3).

Overall quality and certainty of the evidence

Seventeen studies’>*****=° had low risk of bias across
all domains, while three studies’****' had a high risk of
bias due to outcome misclassification (Table 4). This
was primarily from reliance on ICD-coded diagnoses
rather than standardised cognitive screening tools such
as Montreal Cognitive Assessment (MOCA) or Mini-
Mental State examination (MMSE). At present there
are currently no clearly superior cognitive screening

www.thelancet.com Vol 90 December, 2025

tests and in particular MMSE is no worse than other
screening tools for the diagnosis of multidomain
impairment.** Applicability concerns were also noted in
these three studies, as outcome assessment methods
may limit clinical generalisability.”**** We performed
GRADE assessment across prediction models for PSCI
and delirium separately across both reviews. Overall,
the certainly of the evidence is low across both PSCI
and delirium models due to heterogeneity across the
studies, the range of values for discrimination out-
comes and also a lack of pre-registered protocols
(Supplementary Table S3).

Discussion

To our knowledge, this is the most comprehensive re-
view describing models to predict PSCI, post-stroke
dementia and post-stroke delirium. Pooled analysis
showed that model discrimination was good with some
evidence that machine learning methods are generally
higher. However, some caution is needed when
considering clinical utility of these models. There was
significant heterogeneity between studies. Further,
although there has been an increase in model devel-
opment, these were generally in small samples and in
the main from Asia. Further, few models were devel-
oped in line with best practice guidance.”* Accurate and
timely identification of those most at risk enables that
these individuals have the opportunity to modify their
risk through multimodal interventions which have

17
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Study Demographics Medical Symptom Stroke Imaging Acute Laboratory Baseline Health
history severity type findings medical markers function factors
complications
Post-stroke cognitive impairment and dementia
Chander (2017)°>’ CJ L
Ding (2019)> * * *
Gong (2019)*” & e u
Kandiah (2016)>* * *
Lin (2003)° * * * * *
Munsch (2016)°° * * *
Salihovic (2018)°° L
Ashburner 2024 (A)*® * * *
Ashburner 2024 (B)* * * *
Ashburner 2024 (C)** * * *
Molad 2019 (A)* uJ uJ L L
Molad 2019 (B)* O &
Chu 2023* * * *
Dharmasaroja 2022°° * * * *
Georgakis 2023 (A)* uJ uJ i uJ i
Georgakis 2023 (B)*” * * * * *
Georgakis 2023 (C)*/ * * * * * * *
Gong 2021 2 2 &
Huang 2022*° * * * * *
Lee 2023* o oS P o o % * *
Ma 2022% * * *
Pan 2023 (A)** * * *
Pan 2023 (B)* * * *
Wang 2024 (A)* * *
Wang 2024 (B)* &
Wang 2024 (0)* * * *
Wang 2024 (D)* LJ LJ LJ
Zhao 2024 (A)* e e & *
Zhao 2024 (B)*/ * * * * *
Zhao 2024 (C)* * * e * *
Zhao 2024 (D) * * * * *
Zhao 2024 (E)* e e e & *
Zhao 2024 (F)*/ * * * * *
Aamodt 2021°° * * * *
Betrouni 2022%* * * *
Hasan 2024°° * *
Yuan 2021 * * *
Zhu 2020%° 2 2 o
Post-stroke delirium
Kostalova (2012) (1)*° * * * *
Kotsalova (2012) (2)*° * * * *
Kotfis (2019)%° * * * *
Oldenbeuving (2014)%* * * * *
Guldolf 2021% * * * * *
Haight 2020°° * * * * *
Klimiec-Moskal * *
2022°" (A)
Klimiec-Moskal * * *
2022°* (B)
Klimiec-Moskal * * * *
2022°" (C)
Klimiec-Moskal * * * * *
2022°" (D)
Key: Grey Background = Previous Review; White Background = Current Review.
Table 3: Categories of features included in prognostic models across both reviews.
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Study
(Year)

Post-Stroke Cognitive Impairment
Ashburner 2024

Molad 2019

Chu 2023

Dharmasaroja 2022

Georgakis 2023

Gong 2021

Huang 2022

Lee 2023

Ma 2022

Pan 2023

Wang 2024

Zhao 2024

Aamodt 2021

Betrouni 2022

Hasan 2024

Yuan 2021

Zhu 2020

Subgroup, REML+HKSJ (I2 =95.7%, p < 0.001)
with estimated 95% predictive interval

Post-Stroke Delirium

Guldolf 2021

Haight 2020

Klimiec-Moskal 2022
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Fig. 3: Forest plot of discriminatory accuracy by outcome.

already been shown to be effective for those at-risk of
dementia in the general population.*

When combining these results with the previous
review,” there are now a total of 38 models to predict
PSCI and post-stroke dementia and 10 models for
predicting post-stroke delirium. Only two models un-
dertook full evaluation with discrimination, calibration
and external validation in PSCI.** Although discrimi-
nation and stability of the models were good (AUC
>0.80), like other models, these development cohorts
were generally relatively small with only 3 models with
over a thousand participants in their development
cohort (n: 677, range: 2234*-376') when compared to
risk modelling for other diseases. Another important
aspect of model development is external validation and
yet the validation cohorts were even smaller (n = 975%
and 227%). Finally, there were some considerations
around the accessibility of models, In one study, they
avoided the use of specialist imaging markers and
instead used primary care datasets to develop a model
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for PSCI, which demonstrated moderate levels of
discriminatory accuracy.*

Development of stroke specific risk models is
needed so clinicians are able to identify those at-risk of
cognitive decline post-stroke to ensure timely access to
risk reduction strategies.”” Even though there are a
significant number of models developed in whole
populations for dementia prediction,** they do not
work well in stroke-survivors, which may be related to
the risk factors that are included.” Given the rapid in-
crease in both interest and methodological develop-
ment in dementia risk models for the general
population, it was important to update the previous
review to capture any new models developed specifically
for stroke patients. Compared to the previous review,
there has been a significant increase in the number of
models which utilise machine learning techniques.
Many of these models have displayed higher level of
discriminative accuracy compared to traditional
regression models as demonstrated in our pooled
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analysis. Machine learning has already been used to
predict dementia in the general population with some
evidence that these methods show better performance
when these approaches are based on imaging data
rather than clinical variables.* Though machine
learning models tend to produce good levels of
discriminative accuracy, one criticism is the lack of
clinical interpretability. A review identified 92 studies
that applied interpretable methods to machine learning
models but tended to focus on single open-source
datasets.” In this study there were attempts to try and
make the models more interpretable. Lee et al. utilised
the SHapley Additive exPlanations values of the best
prediction model which was their Extreme Gradient
Boosting (XGB) model.* Traditional factors that did
rank highly included for example discharge stroke
severity and age. However, diabetes ranked much lower
when compared to non-evidenced based scores such as
the short geriatric score ranking higher even though
diabetes has consistently been significantly associated
with PSCL.”° Further, models tend to be developed with
variables that are available within the dataset rather
than focusing on evidence based known risk factors to
build the models irrespective of what statistical
methods are used. Some models, particularly the ones
using machine learning, utilised many features
(n = 30).* This can lead to overfitting the model due to
the volume of variables used. In model development it
is therefore important to ensure best practice is fol-
lowed and to take into account multiple parameters in
model assessment rather than simply discrimination.

Risk of bias Applicability
Participants Predictors Outcomes Analysis Overall Participants Predictors Outcome Overall

Aamodt 2021%* + + + + + + * +
Ashburner 2024°% + + - + + R R
Betrouni 2022°* + + + + + + + +
Chu 2023 + + + + + + + +
Dharmasaroja 2022°° + + + + + i & +
Georgakis 2023 + + + + + + + +
Gong 2021 + + + + + + + +
Guldolf 2021*° + + + + + + + +
Haight 2020°° + + + + + + + +
Hasan 2024°° + + - + + - -
Huang 2022%° + + + + + + + +
Klimiec-Moskal 2022°* + + - + + N .
Lee 2023* + + + + + + + +
Ma 2022 + + + + + + + +
Molad 2019% + + + % + + + +
Pan 2023% + + + + + + + +
Wang 2024% + + + + + + + +
Yuan 20214 + + + + + + + +
Zhao 2024 + + + + + + + +
Zhu 2020%° + + + + + + + +
Table 4: Risk of bias assessment using the PROBAST tool.

This would include metrics such as calibration and
decision curve analysis for example which are incon-
sistently reported. At present the evidence around
models for delirium is much less advanced than models
for PSCI and dementia both in terms of the types of
models produced and the size of the dataset. Part of this
may be due to the challenges around recognising and
diagnosing delirium. Hypoactive stroke-survivors can
often be confused as having post-stroke depression and
fatigue.” Further there may be issues in recognising
delirium post-stroke despite how highly prevalent it is
in the acute setting.”” Further work is needed to develop
risk prediction models in this area to ensure early
recognition is possible to ensure appropriate interven-
tion is in place.

Known risk factors for PSCI and dementia often go
beyond traditional features e.g. age and stroke severity.
A recent systematic review concluded that baseline
cognitive impairment showed the strongest association
with both PSCI and post-stroke dementia.”” As we
excluded models where baseline cognitive impairment
and dementia were included, it is not surprising that
very few (n = 3) of the models included in this study for
PSCI and dementia contained this feature. Two of the
models to predict post-stroke delirium did include a
feature associated with baseline cognitive deficit.*”*
Other factors that increase risk of PSCI and dementia
in the context of stroke include diabetes, atrial fibrilla-
tion and the presence of moderate or severe white
matter hyperintensities.*** Across both reviews dia-
betes (n = 8)7##45 wag the most common
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medically related risk factor to be included. Atrial
fibrillation was only included in three models**"* and
white matter hyperintensities (or Fazeka score) in nine
studies.’o 414345475254 [ ower years of education and
previous stroke are also known to increase risk for
PSCI” and again are well represented across the
models (education n = 163¥-3840-#24-48525354 and previ-
ous stroke n = 732307446455 [deally, the models
themselves would contain modifiable risk factors but
there needs to be a balance between discriminative
ability and risk factor accessibility. This may depend on
the purpose of the tool i.e., whether it is purely for
identification only. Future studies should consider a
component meta-analysis of these multicomponent risk
prediction scores to assess the importance of risk fac-
tors across models.

One criticism of risk prediction models for PSCI
including in the context of stroke is knowing what can
be done to lower one’s risk.”” Including modifiable risk
factors such as diabetes, atrial fibrillation and prevent-
ing recurrent stroke, all factors known to increase risk
of PSCI, should be at the forefront of any interventions
as well as being used in model development. Although
many high value risk factors (such as baseline cognition
and education) may not be modifiable, strong predictive
models can help ensure early identification, psycho-
education, monitoring and management of patients,
expanding upon the existing narrow focus on medica-
tion management and secondary prevention in long
term stroke care.”” Primary care is often responsible for
managing these conditions. Use of features that can be
accessed and analysed by primary care services would
provide the greatest potential for intervention. Only one
study utilised primary care clinical records to develop a
model for PSCI or dementia with moderate levels of
accuracy (Full model: C-statistic 0.75 (95% CI: 0.73—
0.78).* However, besides age, the remaining features
are not known to be clearly associated with PSCI and
post-stroke dementia. Future studies could look to uti-
lise evidence-based risk factors for PSCI and dementia
to develop models in large volume primary care
datasets.

Development of all risk models has tended to be in
relatively small cohorts. Although cohort sizes have
increased since the first review, across both reviews,
most studies had less than a thousand stroke-survivors
in their development cohort. When developing a pre-
diction model, the sample size depends on the disease
prevalence in the study population, candidate predictor
parameters, and desired percentage of variation in
outcome values explained by the model (commonly
reported by R-squared). The models included in this
review often lacked formal methodological approaches
to determine sample size criteria and did not adhere to
good practice.”*”” This is particularly important when
considering how many variables should be included in
the overall prediction model. Events per variable (EPV)
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have previously been used to address this but simula-
tion studies have shown that EPV rules for binary
logistic regression is weak’ and large sample sizes are
needed when using machine learning methods.”
Future studies should consider parameters such as
the number of predictors, total sample size and events
fraction as criteria in the development of their model.”®
To address the issue around small cohorts, there have
been some efforts to try and harmonise stroke cohorts.
For example, one study harmonised three stroke co-
horts as part of the STROKOG consortium.* A similar
approach has been used to externally validate simple
dementia risk models previously.” However, given that
these are small cohorts model development will often
be restricted by common features across all cohorts.
The model that harmonised these three cohorts had
only 327 participants. Large datasets, in the form of
electronic healthcare records are likely to be needed to
take the next step in the field of PSCI and dementia risk
prediction alongside explainable modelling techniques
to find non-linear relationships between features and
unravel the complexities between these relationships.
This will be particularly important when we begin to
consider non-traditional risk factors as there is evidence
to suggest that higher order factors such as emotional
distress and subjective health are more important than
defined clinical factors when evaluated together.”® This
is likely because such higher-order factors reflect the
complex interactions between functional, social, mental
and Dbiological aspects of the individual.”® Another
aspect that needs considering in model development is
how the primary study addressed missing data. We did
not formally assess how included papers treated
missing data in their models. However, we noted that
this aspect was poorly reported and where an approach
was described there was substantial heterogeneity in
the method used. In studies of populations with stroke
and cognitive issues, the missing data is likely to relate
to the exposure and the outcome, and so missing data
are an important threat to the validity of the results.
Finally, methodologically few of the models developed
actually followed best practice in terms of both model
development®” and validation.” Although all studies
included had measures of discrimination, few had
other robust measures of model assessment including
calibration and decision curve analysis® which may
limit the current models’ clinical utility.

The strengths of this study include the inclusive
search strategy to capture all available models, regard-
less of language and alignment with our previous re-
view criteria, to enable model comparison from both
reviews. Studies that included pre-morbid cognitive
impairment and those that did not specify whether the
population included those with baseline cognitive
impairment or dementia were excluded to ensure ho-
mogeneity in our final selection of studies. Although
there will be stroke patients who have pre-existing
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cognitive impairment prior to their stroke, the models
presented in this and the previous review reflect a
proportion of the stroke population where there is no
cognitive impairment at baseline. We do appreciate that
the findings here may not be directly applicable to those
with pre-existing cognitive impairment at baseline and
future studies should look to synthesise these findings.
The previous review did include a study that predicted
“no cognitive impairment”. We have included this
study in this review given that it met the original in-
clusion criteria, but we did not include studies that
predicted non-cognitive impaired outcomes or recovery.
Furthermore, we kept the delirium models separate
from the PSCI and post-stroke dementia studies as the
delirium models did not exclude cognitive impairment
at baseline, in line with the previous review. We also
performed an updated search (Supplementary
Table S4) which further highlights the rapid develop-
ment of such models but in general reflects the ongoing
methodological limitations encountered by the models
included in the formal analysis. We do recognise some
limitations. The findings were limited by geographical
imbalance and related differences in population de-
mographics, lack of external validation, and methodo-
logical heterogeneity between included studies.
Further, our search only included published studies
and grey literature was not included. While dementia
risk models for the general population are predomi-
nantly developed in high-income settings, most of the
models developed for cognitive syndromes in our re-
view originated from upper-middle-income China, with
additional contributions from other Asian countries,
such as Thailand and South Korea. Few models were
developed in high-income settings such as the US, UK
and Germany. This could potentially restrict the gen-
eralisability of our findings outside of Asia, particularly
as the risk profile for certain comorbidities associated
with post-stroke cognitive decline may differ between
Asian and non-Asian ethnicities. Methodologically, very
few studies were externally validated in populations
separate to the derivation cohort which limits our un-
derstanding as to how transportable these models are in
other settings and particularly how accurate they are in
other non-Asian populations. Further, although we did
exclude those with pre-stroke cognitive impairment and
dementia so that we could compare across both reviews,
we do recognise the frequency of pre-stroke cognitive
impairment. It may also be helpful to find ways to
determine which patients with pre-stroke cognitive
impairment go on to develop dementia. This is because
pre-stroke cognitive impairment is both a major risk
factor for post-stroke cognitive impairment and is
frequently found prior to the index stroke event. How-
ever, pre-stroke cognitive assessment is difficult due to
imprecise assessment tools and screening is unfortu-
nately rarely performed in clinical practice. Although it
is likely that there may be those with undetected pre-

stroke cognitive impairment in clinical settings, the
intention of this study was to synthesise existing clinical
prediction scores where symptomatic dementia/cogni-
tive impairment was already present at baseline.
Finally, we could not account for all methodological
difference between all the included studies, specifically
in how PSCI and dementia were diagnosed across
studies and researcher settings.

An accurate, cost-effective and clinical useable
model is key if we are to identify those stroke patients at
the greatest risk of cognitive decline. This will not only
have an impact on risk reduction strategies being
developed and implemented, but this could also
potentially reduce the overall numbers of stroke pa-
tients with cognitive decline which has significant
healthcare, economic and societal cost implications.
Despite the significant increase in model development,
overall certainty of evidence is low and external valida-
tion to assess model transportability is unfortunately
still lacking. This is particularly important for models
where machine learning approaches are used. There is
a risk of overfitting if external validation is not a routine
part of model development. Further, few models fol-
lowed best practice guidance for model development®
and validation” which is recommended to ensure
clinical utility. The predominance of models being
developed in Asia without external validation in other
populations limits any current recommendations of any
model for clinical usage. Future research needs to uti-
lise large datasets which capture a diverse population
such as primary care records and focus on all aspects of
model development from discrimination and calibra-
tion to full external validation. Upon model develop-
ment, it is essential that cost effectiveness is assessed.
Model developed should also involve key stakeholders
to further test and evaluate implementing models into
clinical practice.
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